Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(C=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{40.41}+\frac{2}{41.42}\)
\(\Rightarrow C=2.\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{40.41}+\frac{1}{41.42}\right)\)
\(\Rightarrow C=2\left(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{41-40}{40.41}+\frac{42-41}{41.42}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}\right)\)
\(\Rightarrow C=2.\left(\frac{1}{3}-\frac{1}{42}\right)=\frac{13}{21}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(\Rightarrow D=\frac{7-3}{3.7}+\frac{11-7}{7.11}+\frac{15-11}{11.15}+...+\frac{111-107}{107.111}\)
\(\Rightarrow D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}=\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)\(E=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow E=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Rightarrow E=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}+\frac{11-10}{10.11}\)
\(\Rightarrow E=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{3\left(x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)(Vì 3x + 3 lớn hơn 3x - 1 là 4 đơn vị)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x+1-1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{x}{3x+3}=\frac{3}{10}\)
\(\Rightarrow10x=3.\left(3x+3\right)\)
\(\Rightarrow10x=9x+9\)
\(\Rightarrow x=9\)
Vậy...
\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)
\(A=-\frac{7}{33}+-2\)
\(A=-\frac{73}{33}\)
[ A] = -2
f) \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}=\frac{3^3.\left(0,5\right)^5}{\left[3.\left(0,5\right)\right]^4}=\frac{3^3.\left(0,5\right)^5}{3^4.\left(0,5\right)^4}=\frac{0,5}{3}=\frac{1}{6}\)
b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}=\frac{2^3.\left(1+3.2^3-2^3\right)}{2^3+3^2}=\frac{2^3.17}{17}=2^3=8\)
Các phần còn lại tương tự, bạn tự làm nhé !
(*) Lưu ý ở những bài rút gọn có chứa lũy thừa thì bạn đưa số đó về số nguyên tố rồi thực hiện như bình thường .
VD : \(4^3=\left(2^2\right)^3=2^6\) ( đưa về số nguyên tố là 2 )
\(6^3=\left(2.3\right)^3=2^3.3^3\) ( đưa về tích hai số nguyên tố )
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-....-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{1}{30}\)
Nên 3x + 3 = 30
3x = 30 - 3 = 27
x = 27 : 3 = 9
\(E=\frac{\frac{4}{3\cdot7}-\frac{4}{11.15}}{1-\frac{3}{7}-\frac{3}{11}+\frac{1}{5}}-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2006.2007}\right)\)
\(=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{11}+\frac{1}{15}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2006}-\frac{1}{2007}\right)\)
\(=\frac{\frac{64}{385}}{\frac{192}{385}}-\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(=\frac{1}{3}-\left(\frac{1}{3}-\frac{1}{2007}\right)=\frac{1}{2007}\)
Vậy : \(E=\frac{1}{2007}\)