Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^5 +x+1 x^3-x x^2 x^5-x^3 - x^3+x+1 +1 x^3-x - 2x+1
Vậy \(x^5+x+1\)chia cho \(x^3-x\) dư \(2x+1\)
Ta có: \(x^3-x=x\left(x^2-1\right)=\left(x-1\right)x\left(x+1\right)\)
Để ý rằng đa thức chia là đa thức bậc 3 nên đa thức dư có bậc cao nhất là 2. Giả sử đó là ax2 + bx + c.
Khi đó ta có \(x^5+x+1=\left(x-1\right)x\left(x+1\right).Q\left(x\right)+ax^2+bx+c\)
Do đẳng thức trên đúng với mọi x nên
Với x = 1 thì \(a+b+c=3\)(1)
Với x = 0 thì \(c=1\)
Với x = -1 thì -1 = a - b + c (2)
Thay c = 1 vào (1) và (2) ta được \(\hept{\begin{cases}a+b+1=3\\a-b+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2\\a-b=-2\end{cases}}\Leftrightarrow2a=0\Leftrightarrow a=0\Rightarrow b=2\)
Vậy đa thức dư là \(0x^2+2x+1=2x+1\)
có 20042=4016016 chia 11 dư 1
=>(20042)1002=4.......016 chia 11 dư 1
=> 20042004 chia 11 dư 1
Ta có : 21000 = (22)500 = 4500
4500 có tận cùng bằng 6
=> 4500 : 5 dư 1
=> 21000 : 5 dư 1