Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(f\left(x\right)=1+x+x^{19}+x^{199}+x^{1995}\)
\(=\left(x^{1995}-x\right)+\left(x^{199}-x\right)+\left(x^{19}-x\right)+4x+1\)
\(=-x\left[1-\left(x^2\right)^{997}\right]-x\left[1-\left(x^2\right)^{99}\right]-x\left[1-\left(x^2\right)^9\right]+4x+1\)
\(=-x.\left(1-x^2\right).A\left(x\right)-x.\left(1-x^2\right).B\left(x\right)-x.\left(1-x^2\right).C\left(x\right)+4x+1\)
Vậy ta có số dư của \(f\left(\right)\) cho \(q\left(x\right)\) là \(4x+1\)
Vì đa thức chia cho bậc là \(2\)
nên số dư có dạng : \(ax+b\)
Gọi thương của phép chia \(f\left(x\right)\) cho \(Q\left(x\right)\) là : \(P\left(x\right)\)
Ta có : \(f\left(x\right)=P\left(x\right).Q\left(x\right)+ax+b\)
\(=P\left(x\right).\left(1-x^2\right)+ax+b\)
\(=P\left(x\right)\left(1-x\right)\left(1+x\right)+ax+b\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=a+b\\f\left(-1\right)=-a+b\end{matrix}\right.\)
Lại có : \(f\left(x\right)=1+x+x^{19}+x^{199}+x^{1995}\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=5\\f\left(-1\right)=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\-a+b=-3\end{matrix}\right.\)
\(\Rightarrow a+b-a+b=5-3\)
\(\Rightarrow2b=2\)
\(\Rightarrow b=1\)
\(\Rightarrow a=4\)
\(\Rightarrow\) Đa thức dư là : \(4x+1\)
có \(f\left(x\right)=\left(x+1\right)A\left(x\right)+5\)
\(f\left(x\right)=\left(x^2+1\right)B\left(x\right)+x+2\)
do f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là bậc 3 nên số dư là bậc 2. ta có \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+ax^2+bx+c=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left(C\left(x\right).x+C\left(x\right)+a\right)+bx+c-a\)
Vậy \(bx+c-a=x+2\Rightarrow\hept{\begin{cases}b=1\\c-a=2\end{cases}}\)
mặt khác ta có \(f\left(-1\right)=5\Leftrightarrow a-b+c=5\Rightarrow a+c=6\Rightarrow\hept{\begin{cases}a=2\\c=4\end{cases}}\)
vậy số dư trong phép chia f(x) cho \(x^3+x^2+x+1\)là \(2x^2+x+4\)
cách 1 bn đặt phép tính chia ra rùi làm còn cách 2 thì để mk suy nghĩ!!!
45435656457567565687697634534645645767567567876878365546454545
à quên cách 2 ko dùng cho phép chia có dư được hì!!
456547657567557876897345345345346546456465465756
Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)
Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)
Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)
\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)
Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)
Ta cũng có :
\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)
Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)
Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)
Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5
\(A\left(x\right)=x^{19}+x^5+x^{1996}.\)
\(Q\left(x\right)=x^2-1\)
Phép chia có dư
=> \(A\left(x\right)=Q\left(x\right)+r\)
\(x^{19}+x^5-x^{1995}=x^2-1+r\)
Với x=1 => \(1+1-1=1-1+r\)\(\Rightarrow r=1\)
Với x=-1 => \(-1+-1-\left(-1\right)=1-1+r\Rightarrow r=-1\)
Vậy số dư của phép chia đó là 1,-1
đây là định bí Bơ Du nha bạn
Gọi thương của phép chia \(x^{19}+x^5-x^{1995}\) cho \(x^2-1\)là \(A\left(x\right)\)và số dư là \(ax+b\) (do đa thức chia bậc 2)
Ta có: \(f\left(x\right)=x^{19}+x^5-x^{1995}=\left(x^2-1\right)A\left(x\right)+ax+b\)
\(=\left(x-1\right)\left(x+1\right)A\left(x\right)+ax+b\)
Do đa thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=1\)ta được:
\(\hept{\begin{cases}a+b=1\\-a+b=-1\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a=1\\b=0\end{cases}}\)
Vậy đa thức dư là \(x\)