Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:
\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)
với x = 1 thì: a + b = 5 (1)
với x = -1 thì: -a + b = -5 (2)
từ (1); (2) => b = 0; a = 5
=> số dư của phép chia là 5x
Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)mà
Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại
Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 .
Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có
\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)
\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)
Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)
Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)
Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\), \(b=0\)
Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)
Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm
Lời giải:
Theo định lý Bê-du về phép chia đa thức, thương của $f(x)$ khi chia cho $q(x)=x-1$ là:
$f(1)=1^3+1^9+1^{27}+1^{243}=4$
x2+(x+y)2=(x+9)2
x2+x2+2xy+y2=x2+18x+81
x2+x2+2xy+y2-x2-18x-81=0
x2+2xy+y2-18x-81=0
het biet roi
Ta có: x^2+(x+y)^2=(x+9)^2
=>x^2+x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2-x^2-18x-81=0
=>(x^2+2xy+y^2)-18(x+1)-99=0
=>(x+1)^2-18(x+1)-99=0
=>(x+1)(x+1-18)-99=0
=>(x+1)(x-17)-99=0
=>(x+1)(x-17)=99
=>(x+1)(x-17)=1*99=3*33=......
=>x=tự tính nốt
=>