K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

a,b,c,S,h biết a,b\(\Rightarrow\hept{\begin{cases}S=\frac{1}{2}a.b=\frac{1}{2}c.h\\a^2+b^2=c^2\end{cases}}\Rightarrow h=\frac{ab}{\sqrt{a^2+b^2}}\)

9 tháng 3 2017

Cạnh huyền = \(\sqrt{18}\) x \(\sqrt{2}\)

= 3 x \(\sqrt{2}\) x \(\sqrt{2}\)

= 6

9 tháng 3 2017

Nhầm

Cạnh góc vuông = cạnh huyền / \(\sqrt{2}\)

= \(\sqrt{18}\) / \(\sqrt{2}\)

3 x \(\sqrt{2}\) / \(\sqrt{2}\)

= 3

15 tháng 3 2017

Đính lý Pi ta go

15 tháng 3 2017

Gọi tam giác đã cho là tam giác ABC

Ta có tam giác ABC vuông tại A nên:

\(BC^2=AB^2+AC^2\Rightarrow13^2=12^2+AC^2\)

\(\Rightarrow AC^2=13^2-12^2\Rightarrow AC^2=169-144=25\)

\(\Rightarrow AC=\sqrt{25}=5\)

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

17 tháng 6 2017

M N I E D

Theo định lý py ta go ta có :

\(NI^2=MN^2+MI^2\)

\(NI^2=6^2+8^2\)

\(NI^2=100\)

\(\Rightarrow NI=10cm\)

b )

Xét \(\Delta DMI\)\(DEI\) có :

\(DMI=DEI\left(90\right)\)

\(DI\) cạnh chung

\(I_1=I_2\left(gt\right)\)

\(\Rightarrow\Delta DMI=\Delta DEI\left(ch-gn\right)\)

\(\Rightarrow DM=DE\) ( 2 cạnh t ứng )

17 tháng 6 2017

1 2 M I N D E A

a) \(\Delta MNI\) vuông tại M, theo định lí Py-ta-go

Ta có: NI2 = MN2 + MI2

NI2 = 62 + 82

NI2 = 100

\(\Rightarrow NI=\sqrt{100}=10\left(cm\right)\).

b) Xét hai tam giác vuông MID và EID có:

ID: cạnh huyền chung

\(\widehat{I_1}=\widehat{I_2}\left(gt\right)\)

Vậy: \(\Delta MID=\Delta EID\left(ch-gn\right)\)

Suy ra: DM = DE (hai cạnh tương ứng).

c) Ta có: MI = EI (\(\Delta MID=\Delta EID\))

\(\Rightarrow\) \(\Delta MIE\) cân tại I

\(\Rightarrow\) ID là đường phân giác đồng thời là đường trung trực của ME (1)

Ta lại có: hai đường cao MN và AE cắt nhau tại D

\(\Rightarrow\) D là trực tâm của \(\Delta ANI\)

\(\Rightarrow\) ID là đường cao còn lại của \(\Delta ANI\) hay ID \(\perp\) AN (2)

Từ (1) và (2) suy ra: AN // EM (đpcm).