Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ:
9x^2 - 16 ≠ 0
=> (3x - 4)(3x + 4) ≠ 0
=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0
=> 3x ≠ 4 và 3x ≠ -4
=> x ≠ 4/3 hoặc x ≠ -4/3
b, ĐKXĐ:
x^2 - 5x + 6 ≠ 0
=> x^2 - 2x - 3x + 6 ≠ 0
=> x(x - 2) - 3(x - 2) ≠ 0
=> (x - 3)(x - 2) ≠ 0
=> x - 3 ≠ 0 và x - 2 ≠ 0
=> x ≠ 3 và x ≠ 2
c, ĐKXĐ :
x^2 - 4x + 4 ≠ 0
=> (x - 2)^2 ≠ 0
=> x - 2 ≠ 0
=> x ≠ 2
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
\(a)x\ne\pm\frac{4}{3}\)
\(b)x\ne2\)
\(c)x\ne\pm1\)
\(d)x\ne0;x\ne\frac{1}{2}\)
\(e)x\ne\pm1\)
\(f)x\ne-1;x\ne3\)
\(g)x\ne3;x\ne2\)
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
a) Để giá trị của phân thức \(\frac{x^2-4}{9x^2-16}\) được xác định thì
\(9x^2-16\ne0\)
⇔(3x-4)(3x+4)≠0
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4\ne0\\3x+4\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne4\\3x\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{4}{3}\\x\ne-\frac{4}{3}\end{matrix}\right.\)
Vậy: khi \(x\ne\pm\frac{4}{3}\) thì giá trị của phân thức \(\frac{x^2-4}{9x^2-16}\) được xác định
b) Để giá trị của phân thức \(\frac{2x+1}{x^2-5x+6}\) được xác định thì
\(x^2-5x+6\ne0\)
⇔\(x^2-2x-3x+6\ne0\)
⇔\(\left(x-2\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne3\end{matrix}\right.\)
Vậy: Khi x≠2 và x≠3 thì giá trị của phân thức \(\frac{2x+1}{x^2-5x+6}\) được xác định
c) Để giá trị của phân thức \(\frac{2x-1}{x^2-4x+4}\) được xác định thì
\(x^2-4x+4\ne0\)
\(\Leftrightarrow\left(x-2\right)^2\ne0\)
hay x-2≠0
hay x≠2
Vậy: khi x≠2 thì giá trị của phân thức \(\frac{2x-1}{x^2-4x+4}\) được xác định