Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐKXĐ: $5-4x\geq 0\Leftrightarrow x\leq \frac{5}{4}$
b) ĐKXĐ: \(\left\{\begin{matrix} 3x-4\neq 0\\ \frac{-5}{3x-4}\geq 0\end{matrix}\right.\Leftrightarrow 3x-4< 0\Leftrightarrow x< \frac{4}{3}\)
c) ĐKXĐ: $x^2+7\geq 0\Leftrightarrow x\in\mathbb{R}$
d)
ĐKXĐ: \(x^2-4x+4\geq 0\Leftrightarrow (x-2)^2\geq 0\Leftrightarrow x\in\mathbb{R}\)
n)
\(\left\{\begin{matrix} x+1\neq 0\\ \frac{3x-5}{x+1}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x-5\geq 0\\ x+1>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-5\leq 0\\ x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{5}{3}\\ x< -1\end{matrix}\right.\)
m)
ĐKXĐ: \(\left\{\begin{matrix} 3x-1\neq 0\\ \frac{x^2}{3x-1}\geq 0\end{matrix}\right.\Leftrightarrow 3x-1>0\Leftrightarrow x>\frac{1}{3}\)
g)
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 5-2x>0\end{matrix}\right.\Leftrightarrow 1\leq x< \frac{5}{2}\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(\sqrt {\dfrac{2}{{9 - x}}}\) có nghĩa khi \(\left\{ \begin{array}{l} \dfrac{2}{{9 - x}} \ge 0\\ 9 - x \ne 0 \end{array} \right. \Leftrightarrow 9 - x > 0 \Leftrightarrow - x > - 9 \Leftrightarrow x < 9\)
\(\sqrt {{x^2} + 2x + 1} \) có nghĩa khi: \({x^2} + 2x + 1 = {\left( {x + 1} \right)^2} > 0\forall x \in R\)
\(\sqrt{9-x^2}\) có nghĩa khi: \(9 - {x^2} \ge 0 \Leftrightarrow - {x^2} \ge - 9 \Leftrightarrow {x^2} \le 9 \Leftrightarrow \left| x \right| \le 9\)
\(\Leftrightarrow x\ge3\) hoặc \(x\ge-3\)
\(\sqrt {\dfrac{1}{{{x^2} - 4}}} \) có nghĩa khi: \(\left\{ \begin{array}{l} \dfrac{1}{{{x^2} - 4}} \ge 0\\ {x^2} - 4 \ne 0 \end{array} \right. \Leftrightarrow {x^2} - 4 > 0 \Leftrightarrow \left| x \right| > 4\)
\(\Leftrightarrow x>2\) hoặc \(x>-2\)
a) \(2-6x\ge0\Rightarrow x\le\frac{1}{3}\)
b) \(3x-12\ge0\Rightarrow x\ge4\)
c) \(\hept{\begin{cases}x+3\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-\frac{1}{2}\end{cases}}\Rightarrow x\ge-\frac{1}{2}\)
d) \(\hept{\begin{cases}x^2-25\ne0\\x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne5\\x\ge4\end{cases}}\)
e) \(x^2-8x+7\ge0\)
<=> \(\left(x-1\right)\left(x-7\right)\ge0\)
<=> \(\hept{\begin{cases}x\ge1\\x\ge7\end{cases}}\Rightarrow x\ge7\) or \(\hept{\begin{cases}x\le1\\x\le7\end{cases}}\Rightarrow x\le1\)
a)
\(\frac{1}{2-\sqrt{x}}\) được xác định khi và chỉ khi 2-\(\sqrt{x}\)>0
<=> 2>\(\sqrt{x}\)
<=> \(\sqrt{4}>\sqrt{x}\)
\(\Leftrightarrow4>x\)
b)
\(\sqrt{-\frac{5}{x-4}}\) được xác định khi và chỉ khi x-4>0
<=> x>4
\(x^2-25\ge0\Leftrightarrow\left(x-5\right)\left(x+5\right)\ge0\Rightarrow\left[{}\begin{matrix}x\le-5\\x\ge5\end{matrix}\right.\)
\(\frac{x+1}{x-2}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x>2\end{matrix}\right.\)