Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó vậy bạn có đăng bài nào lớp 3456 ko mih làm cho nhưng bài dễ mih làm cho
\(b,ĐKXĐ:x>0\)
\(D=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)
Áp dụng bđt Cauchy cho 2 số dương \(2011\sqrt{x}\)và\(\frac{1}{\sqrt{x}}\)ta được:
\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}.\frac{1}{\sqrt{x}}}\)
\(\Leftrightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{2011}-2\)
\(\Leftrightarrow D\ge2\sqrt{2011}-2\)
Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\left(TMĐK\right)\)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
a, ĐK : \(x\ge0;x\ne4\)
b, \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
Để A nguyên thì \(\frac{2}{\sqrt{x}+1}\)phải nguyên suy ra \(\sqrt{x}+1\)là ước của 2
Ta thấy \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\) mà điều kiện cho \(x\ge0\)và \(x\ne1\)nên \(\sqrt{x}+1\in\left\{1;2\right\}\)
Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)(thoải mãn )
Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)
Vậy x = 0 thì A nguyên
a)ĐKXĐ: \(\left\{{}\begin{matrix}-2x+1\ne0\\\frac{3}{-2x+1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-2x+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\x< \frac{1}{2}\end{matrix}\right.\)
b) ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)
c) ĐKXĐ: \(x\in\mathbb{R}\)