Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}.\sqrt{x}+3\left(\sqrt{x}+1\right)-\left(5\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}}-\dfrac{5\sqrt{x}+3}{x+\sqrt{x}}\\ ĐKXĐ:x>0;x\ne1\\ \Rightarrow A=\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{5\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x+3\sqrt{x}+3-5\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Vậy \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) với \(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
Mik đăng câu hỏi mà ko thấy ai trả lời hết, với lại h mik giải được rồi nên đăng lên có ai tìm bài này thì có đáp án ha ( mấy CTV đừng hiểu lầm nhé)
a) \(x^2-13x+50=4\sqrt{x-3}\)
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow x^2-13x+50-4\sqrt{x-3}=0\)
\(\Leftrightarrow x^2-14x+x+49-3-+4-4\sqrt{x-3}=0\)
\(\Leftrightarrow(x^2-14x+49)+(x-3-4\sqrt{x-3}+4)=0\)
\(\Leftrightarrow\left(x-7\right)^2+\left(\sqrt{x-3}-2\right)^2=0\)
\(\Leftrightarrow\left(x-7\right)^2=\left(\sqrt{x-3}-2\right)^2\)
\(\Leftrightarrow x-7=-\sqrt{x-3}+2\)
\(\Leftrightarrow x-9=-\sqrt{x-3}\)
\(\Leftrightarrow x^2-18x+81=x-3\)
\(\Leftrightarrow x^2-19x+84=0\)
\(\Leftrightarrow\left(x+12\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-12=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{7;12\right\}\)
\(b)\dfrac{4x}{x^2-5x+6}+\dfrac{3x}{x^2-7x+6}=6\)
ĐKXĐ: \(x\ne1,2,3,6\)
Đặt \(t=x^2-6x+6\)
pt \(\Leftrightarrow\dfrac{4x}{t+x}+\dfrac{3x}{t-x}=6\)
\(\Leftrightarrow\dfrac{4x\left(t-x\right)+3x\left(t+x\right)}{\left(t+x\right)\left(t-x\right)}=6\)
\(\Leftrightarrow\dfrac{7tx-x^2}{t^2-x^2}=6\)
\(\Leftrightarrow7tx-x^2=6t^2-6x^2\)
\(\Leftrightarrow-6t^2+7xt+5x^2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)\left(t-\dfrac{5}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\t-\dfrac{5}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+6-\dfrac{5}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2-6x+\dfrac{13}{3}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{9+\sqrt{42}}{3}\\x=\dfrac{9-\sqrt{42}}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{-1}{2};\dfrac{9\pm\sqrt{42}}{3}\right\}\)
a) \(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{5x-1}{3x+2}=\dfrac{5x-7}{3x-1}\)
\(=\dfrac{5x-1-5x+7}{3x+2-3x+1}\)
\(=\dfrac{-1+7}{2+1}\)
\(=\dfrac{6}{3}\)
\(=2\)
Với \(\dfrac{5x-1}{3x+2}=2\)
\(\Rightarrow5x-1=2\left(3x+2\right)\)
\(\Rightarrow5x-1-2\left(3x+2\right)=0\)
\(\Rightarrow5x-1-6x-4=0\)
\(\Rightarrow-x-5=0\)
\(\Rightarrow x=-5\)
\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)
\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)
\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)
\(\Leftrightarrow2x-13< 0\)
\(\Leftrightarrow x< \dfrac{13}{2}\)
KL...............
\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)
\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)
\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)
\(\Leftrightarrow-19x+114< 0\)
\(\Leftrightarrow x>6\)
KL..................
Câu 4 :
Ta có :
\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)
\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)
Theo BĐT Bu - nhi a - cốp xki ta có :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)
\(\Leftrightarrow3x^2=4x^2-8x+4\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Delta=64-16=48>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
a) ĐKXĐ : \(\dfrac{-3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5\le0\)
\(\Leftrightarrow3x\le-5\)
\(\Leftrightarrow x\le-\dfrac{5}{3}\)
b) ĐKXĐ :
\(\left\{{}\begin{matrix}x-1\ne0\\4x-4\ge0\end{matrix}\right.\)
\(\Leftrightarrow x>1\)