\(\sqrt{3x-7}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

a) Để \(\sqrt{3x-7}\) có nghĩa \(\Leftrightarrow\) 3x - 7 \(\ge0\)

\(\Leftrightarrow x\ge\dfrac{7}{3}\)

b) Để \(\sqrt{2-5x}\) xđ <=> 5x \(\le2\)

<=> x \(\le\dfrac{2}{5}\)

c) Để \(\sqrt{\dfrac{-3}{x-5}}xđ\Leftrightarrow x-5< 0\)

<=> x < 5

d) Để \(\sqrt{5x^2-x-4}\) xđ <=> 5x2 - x - 4 \(\ge0\)

<=> \(\left(5x+4\right)\left(x-1\right)\ge0\)

Xét bảng:

x -4 1
5x + 4 - 0 + +
x - 1 - - 0 +
(5x+4)(x-1) + 0 - 0 +

Vây ĐKXĐ: -4 \(\le x\le1\)

(bảng xét dấu bị lệch...@@)

e) Để \(\sqrt{9-x^2}\) xđ <=> \(9-x^2\ge0\)

<=> x \(\le\pm3\)

f) Để \(\sqrt{x^2-1}xđ\) <=> x2 - 1 \(\ge0\)

<=> x \(\ge\pm1\)

Bài 2: 

a: ĐKXĐ: 3x-7>=0

hay x>=7/3

b: ĐKXĐ: \(2-5x\ge0\)

hay x<=2/5

c: ĐKXĐ: \(\dfrac{-3}{x-5}\ge0\)

=>x-5<0

hay x<5

d: ĐKXĐ: \(5x^2-x-4\ge0\)

\(\Leftrightarrow5x^2-5x+4x-4\ge0\)

\(\Leftrightarrow\left(x-1\right)\left(5x+4\right)\ge0\)

=>x>=1 hoặc x<=-4/5

e: ĐKXĐ: \(9-x^2\ge0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\le0\)

=>-3<=x<=3

f: ĐKXĐ: \(x^2-1\ge0\)

=>(x-1)(x+1)>=0

=>x>=1 hoặc x<=-1

27 tháng 8 2017

a)\(\sqrt{-5x}\)có nghĩa khi -5x>=0 hay x<=0

b)\(\sqrt{4-x}\) có nghĩa khi 4-x>=0 hay x<=4

c)\(\sqrt{3x+7}\) có nghĩa khi 3x+7.=0 hay x>=-7/3

d)\(\dfrac{2}{x^2}\) có nghĩa khi 2/x^2>=0hay x>=\(\sqrt{2}\)

27 tháng 7 2017

a) Để \(\sqrt{3x-5}\) có nghĩa thì

3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)

b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì

\(\dfrac{-3}{4-5x}\ge0\)

Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)

Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)

c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì

\(\left(x-1\right)\left(x-4\right)\ge0\)

Ta có bảng xét dấu :

x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +

=> x \(\le1\) Hoặc x \(\ge4\)

e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

11 tháng 12 2018

a,\(\sqrt{3x+1}=3x-1\) Đk:\(x\ge\dfrac{-1}{3}\)

\(< =>3x+1=9x^2-6x+1\)

\(< =>9x-9x^2=0\)

\(< =>9x\left(1-x\right)=0\)

\(< =>x=0\) hoặc \(x=1\)
b,\(2+\sqrt{3x-5}=x+1\) Đk:\(x\ge\dfrac{5}{3}\)

\(< =>\sqrt{3x-5}=x-1\)

\(< =>3x-5=x^2-2x+1\)

\(< =>x^2+x+6=0\)(vô lý vì \(x^2\ge\dfrac{25}{9},x\ge\dfrac{5}{3}\))

=>\(x\in\varnothing\)

c,Đk : \(x\ge\dfrac{-7}{5}\)

\(\)\(\dfrac{5x+7}{x+3}=16\)

\(< =>5x+7=16x+48\)

\(< =>-11x=41 \)

\(< =>x=\dfrac{-41}{11}\)(ko tm đk)

\(=>x\in\varnothing\)

d,tương tự câu c bình phương 2 vế cũng ra \(x\in\varnothing\)

5 tháng 6 2018

Bài 1:

a, \(\sqrt{2x-1}=5\Rightarrow2x-1=25\Rightarrow2x=25+1=26\) \(\Rightarrow x=26:2=13\)

b,\(\sqrt{4\left(x-1\right)}=12\Rightarrow4\left(x-1\right)=12^2=144\)\(\Rightarrow x-1=144:4=36\Rightarrow x=36+1=37\)

c,\(\sqrt{x^2-6x+9}=5\Rightarrow\sqrt{\left(x-3\right)^2}=5\)\(\Rightarrow\left|x-3\right|=5\Rightarrow\left[{}\begin{matrix}x-3=5\\3-x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

Bài 2:

a, Để căn thức trên có nghĩa\(\Rightarrow2x-\dfrac{1}{3}\ge0\Rightarrow2x\ge\dfrac{1}{3}\Rightarrow x\ge\dfrac{1}{3}:2=\dfrac{1}{6}\)

Vậy để căn thức trên có nghĩa thì x>= 1/6

b, x<= 5/3

c, -1<=x<5

d, x>=6; x<=-1

Mình k chắc có đúng ko đâu

5 tháng 6 2018

câu d pạn giải ntn vậy

27 tháng 5 2018

1)

a) \(6=\sqrt{36}< \sqrt{40}\)

b) \(3=\sqrt{9}< \sqrt{10}\)

c) \(2\sqrt{3}< 2\sqrt{4}=4\)

d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)

e) \(7=\sqrt{49}< \sqrt{50}\)

2)

a) \(x\ge0\)

b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)

c) \(5-a\ge0\Leftrightarrow a\le5\)

d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

e) \(-3< x< 1\)

f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)

g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)

25 tháng 5 2018

Biểu thức có nghĩa khi biểu thức dưới dấu căn có nghĩa, hay nói cách khác là >= 0

câu e) biểu thức có nghĩa khi mẫu khác 0, nghĩa là \(\sqrt{x^2}-5x+6\) khác 0, từ đó biến đổi như giải phương trình rồi tìm x