Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{4-4x+x^2}+\sqrt{\frac{2}{x^2+6x+9}}=\sqrt{\left(x-2\right)^2}+\sqrt{\frac{2}{\left(x+3\right)^2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x>-3\end{cases}\Rightarrow}x\ge-2}\)
\(b,\frac{5\sqrt{x}}{\sqrt{x}-3}+\frac{2}{\sqrt{x}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}-3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\ne\sqrt{9}\end{cases}\Rightarrow}\hept{\begin{cases}x>0\\x\ne9\end{cases}}}\)
\(c,\sqrt{3-\sqrt{x}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\3-\sqrt{x}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\le3\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\le9\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\le3\end{cases}}}\)
\(\Rightarrow0< x\le3\)
Bài làm:
a) \(\left(2x-1\right)x^2\ge0\), mà \(x^2\ge0\)
\(\Rightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
b) \(3+2x>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)
c) \(4-5x\ge0\Leftrightarrow4\ge5x\Rightarrow x\le\frac{4}{5}\)
d) \(\left(x-3\right)\left(x+3\right)\ge0\)nên ta xét 2 TH sau:
+ Nếu: \(\hept{\begin{cases}x-3\ge0\\x+3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\ge-3\end{cases}}\Rightarrow x\ge3\)
+ Nếu: \(\hept{\begin{cases}x-3\le0\\x+3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\le-3\end{cases}}\Rightarrow x\le-3\)
Vậy \(\orbr{\begin{cases}x\ge3\\x\le-3\end{cases}}\)