Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
a) \(\sqrt{3x-4}\) xác định \(\Leftrightarrow3x-4\ge0\Leftrightarrow3x\ge4\Leftrightarrow x\ge\dfrac{4}{3}\)
b) \(\dfrac{1}{\sqrt{x-4}}\) xác định \(\Leftrightarrow x-4>0\Leftrightarrow x>4\)
`a)` Hàm số xác định `<=>{(5x+3 >= 0),(2x+1 >= 0):}`
`<=>{(x >= -3/5),(x >= -1/2):}<=>x >= -1/2`
`b)` Hàm số xác định `<=>{(x-7 >= 0),(14-x >= 0):}`
`<=>{(x >= 7),(x <= 14):}<=>7 <= x <= 14`
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
a)ĐK:`3x-6>=0`
`<=>3x>=6<=>x>=2`
b)ĐK:`-3x+9>=0`
`<=>-3x>=-9`
`<=>x<=3`
c)ĐK:`(-5)/(-3x+2)>=0(x ne -2/3)`
Vì `-5<0`
`<=>-3x+2<0`
`<=>-3x<-2`
`<=>x>2/3`
e)ĐK:`(5x-3)/(-4)>=0`
MÀ `-4<0`
`<=>5x-3<=0`
`<=>5x<=3`
`<=>x<=3/5`
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
ĐKXĐ:
a.
\(x^2-9\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b.
\(\left(3x+2\right)\left(x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{2}{3}\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge1\)
a) x khác 0, khác 3
b) x khác 0, khác 1, khác 2/3
c) x khác 0, khác 1, khác 2/3