K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

ĐKXĐ:

1/ \(-2x+3\ge0\Leftrightarrow x\le\frac{3}{2}\)

2/ \(x^2\ne0\Rightarrow x\ne0\)

3/ \(x+3>0\Rightarrow x>-3\)

4/ Không tồn tại x để biểu thức xác định

5/ \(3x+4\ge0\Rightarrow x\ge-\frac{4}{3}\)

6/ Biểu thức xác định với mọi x

7/ \(1-2x>0\Rightarrow x< \frac{1}{2}\)

8/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)

5 tháng 7 2017

tìm x để bt xác định

                               

                                            cho mỗi biểu thức trong căn  

                                                                         

                                                                                                  lớn hơn hoặc =0

                                                    

                                           

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2 

20 tháng 3 2020

a) \(x\le\frac{3}{2}\)

b) x \(\ne\)0

c) x>-3

d)vô nghiệm

e) x\(\ge\)\(\frac{-4}{3}\)

f) x\(\in\)R

g) x<\(\frac{1}{2}\)

h)x<\(\frac{-5}{3}\)

20 tháng 3 2020

a,\(\sqrt{-2x+3}\) xác định khi b.\(\sqrt{\frac{2}{x^2}}\) xác định khi

\(-2x+3\ge0\) \(\frac{2}{x^2}\ge0\)

\(\Leftrightarrow-2x\ge-3\) \(\Rightarrow x^2>0\) (vì 2>0) (lđ)

\(\Leftrightarrow x\le\frac{3}{2}\) Vậy\(\sqrt{\frac{2}{x^2}}\) xác định với mọi x Vậy...

c,\(\sqrt{\frac{4}{x+3}}\) xác định khi d,\(\sqrt{\frac{-5}{x^2+6}}\) xác định khi

\(\frac{4}{x+3}\ge0\) \(\frac{-5}{x^2+6}\ge0\)

\(\Rightarrow x+3>0\)(vì 4>0) \(\Rightarrow x^2+6< 0\) (vì -5<0)

\(\Leftrightarrow x>-3\) \(\Leftrightarrow x^2< -6\) (vl)

Vậy... Vậy không có giá trị nào để

căn thức xác định

f,\(\sqrt{1+x^2}\) xác định khi\(1+x^2\ge0\)

\(\Leftrightarrow x^2\ge-1\) (lđ)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)