\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

đk: \(\hept{\begin{cases}x,y\ge0\\\sqrt{x}+\sqrt{y}\ne0\end{cases}}\)

Mà \(\sqrt{x}+\sqrt{y}\ge0\left(\forall x,ytm\right)\)

=> x,y không cùng bằng 0

Vậy \(x,y\ge0\) và \(\orbr{\begin{cases}x=0\\y=0\end{cases}}\) hoặc x,y khác 0

26 tháng 7 2015

a) A = B : C = \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\)\(\frac{\sqrt{x^3y}+\sqrt{xy^3}}{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}\)

A xác định <=> x > 0 và y > 0

\(B=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]=\frac{2}{\sqrt{xy}}+\frac{1}{x}+\frac{1}{y}=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\)

\(C=\frac{\sqrt{x}.\left(x+y\right)+\sqrt{y}.\left(x+y\right)}{\sqrt{xy}.\left(x+y\right)}=\frac{\left(\sqrt{x}+\sqrt{y}\right).\left(x+y\right)}{\sqrt{xy}.\left(x+y\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\)

=> A =  B : C = \(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2\) : \(\left(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\right)\) = \(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\)

c) \(A=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\ge2.\sqrt{\frac{1}{\sqrt{y}}.\frac{1}{\sqrt{x}}}=2.\sqrt{\frac{1}{\sqrt{6}}}\)

=> A nhỏ nhất bằng \(2.\sqrt{\frac{1}{\sqrt{6}}}\) khi \(\frac{1}{\sqrt{y}}=\frac{1}{\sqrt{x}}\) => x = y = \(\sqrt{6}\)

22 tháng 9 2020

a. ĐKXĐ : \(\hept{\begin{cases}x\ge0\\y\ge0\\y-x\ne0\end{cases}}\)<=> \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)

b. \(R=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{y-x}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(\Leftrightarrow R=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(\Leftrightarrow R=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{x-\sqrt{xy}+y}\)

\(\Leftrightarrow R=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

c. Với \(\hept{\begin{cases}x\ge0\\y\ge0\\x\ne y\end{cases}}\)thì \(\sqrt{xy}\ge0\)  ( 1 )

Ta có : \(x-\sqrt{xy}+y=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}\)

Mà \(\orbr{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(1\right)\end{cases}}\)=> \(x-\sqrt{xy}+y\ge0\)( 2 )

Từ ( 1 ) và ( 2 ) => \(R\ge0\) ( Đpcm )

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

10 tháng 5 2019

ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)

<=> \(x\ne-2\)và \(x\ne5\)

b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)

Với \(x-2>0\)<=> \(x>2\)

=> \(|x-2|=x-2\)

Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)

Với \(x-2< 0\)<=> \(x< 2\)

=> \(|x-2|=-\left(x-2\right)=2-x\)

Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)

Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)