\(\sqrt{\dfrac{1}{2x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

\(\frac{x-2}{x^2-2x+1}\ge0\)

\(\frac{x-2}{\left(x-2\right)^2}\ge0\)

\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)

\(\Rightarrow x>2\)

hoc lop may roi đại lộc .

16 tháng 12 2016

Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có

ĐKXĐ là

\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)

19 tháng 10 2017

ĐKXĐ: \(\left(2x-1\right)^2\ge0\)

<=> \(x\in R\)

5 tháng 6 2019

a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)

b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)

Đúng không ta?:3

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

14 tháng 8 2019

a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)

Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)

14 tháng 8 2019

b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)

Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2