K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

a) m ≠ 8 3              b) n 0 và n 2.

c) v ∈ ℝ  

d) Chú ý: Biến đổi u 3 - 3u + 2 = ( u   -   1 ) 2 (u + 2). Từ đó tìm được điều kiện xác định là u  ≠  -2 và u  ≠  1.

Bài 1:

a) Ta có: \(VT=\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u^2-3u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(n^2-u-2u+2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left[u\left(u-1\right)-2\left(u-1\right)\right]}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{-\left(u-1\right)\left(u-2\right)}{\left(u+2\right)\left(u-1\right)}\)

\(=\frac{2-u}{u+2}\)(1)

Ta có: \(VP=\frac{u^2-4u+4}{4-u^2}\)

\(=\frac{\left(u-2\right)^2}{-\left(u-2\right)\left(u+2\right)}\)

\(=\frac{-\left(u-2\right)}{u+2}\)

\(=\frac{2-u}{u+2}\)(2)

Từ (1) và (2) suy ra \(\frac{-u^2+3u-2}{\left(u+2\right)\left(u-1\right)}=\frac{u^2-4u+4}{4-u^2}\)

b) Ta có: \(VT=\frac{v^3+27}{v^2-3v+9}\)

\(=\frac{\left(v+3\right)\left(v^3-3u+9\right)}{v^2-3u+9}\)

\(=v+3=VP\)(đpcm)

Bài 2:

a) Ta có: \(\frac{3x^2-2x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{3x^2-5x+3x-5}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{x\left(3x-5\right)+\left(3x-5\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow\frac{\left(3x-5\right)\left(x+1\right)}{M}=\frac{3x-5}{2x-3}\)

\(\Leftrightarrow M=\frac{\left(3x-5\right)\left(x+1\right)\left(2x-3\right)}{3x-5}\)

\(\Leftrightarrow M=\left(x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow M=2x^2-3x+2x-3\)

hay \(M=2x^2-x-3\)

Vậy: \(M=2x^2-x-3\)

b) Ta có: \(\frac{2x^2+3x-2}{x^2-4}=\frac{M}{x^2-4x+4}\)

\(\Leftrightarrow\frac{2x^2+4x-x-2}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{M}{\left(x-2\right)^2}\)

\(\Leftrightarrow\frac{M}{\left(x-2\right)^2}=\frac{2x-1}{x-2}\)

\(\Leftrightarrow M=\frac{\left(2x-1\right)\left(x-2\right)^2}{\left(x-2\right)}\)

\(\Leftrightarrow M=\left(2x-1\right)\left(x-2\right)\)

\(\Leftrightarrow M=2x^2-4x-x+2\)

hay \(M=2x^2-5x+2\)

Vậy: \(M=2x^2-5x+2\)

Bài 3:

a) Ta có: \(\frac{x+1}{N}=\frac{x^2-2x+4}{x^3+8}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Leftrightarrow\frac{x+1}{N}=\frac{1}{x+2}\)

\(\Leftrightarrow N=\left(x+1\right)\left(x+2\right)\)

hay \(N=x^2+3x+2\)

Vậy: \(N=x^2+3x+2\)

n) Ta có: \(\frac{\left(x-3\right)\cdot N}{3+x}=\frac{2x^3-8x^2-6x+36}{2+x}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{2x^3+4x^2-12x^2-24x+18x+36}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{\left(x+3\right)}=\frac{2x^2\left(x+2\right)-12x\left(x+2\right)+18\left(x+2\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=\frac{\left(x+2\right)\left(2x^2-12x+18\right)}{x+2}\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-12x+18\)

\(\Leftrightarrow\frac{N\cdot\left(x-3\right)}{x+3}=2x^2-6x-6x+18=2x\left(x-3\right)-6\left(x-3\right)=2\cdot\left(x-3\right)^2\)

\(\Leftrightarrow N\cdot\left(x-3\right)=\frac{2\left(x-3\right)^2}{x+3}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)^2}{x+3}:\left(x-3\right)=\frac{2\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(\Leftrightarrow N=\frac{2\left(x-3\right)}{x+3}\)

hay \(N=\frac{2x-6}{x+3}\)

Vậy: \(N=\frac{2x-6}{x+3}\)

26 tháng 10 2019

a) ∀ x , y ∈ ℝ  

b) Chú ý: A 2   +   B 2   ≥   0 với ∀ A , B . Dấu "=" xảy ra khi A = 0 B = 0  

Từ đó tìm được điều kiện xác định là: u 1 và v-2.

18 tháng 8 2020

1. ĐKXĐ : \(x\ne\pm8\)

Ta có :

\(\frac{A}{x^2-64}=\frac{x}{x-8}\)

\(\Leftrightarrow\frac{A}{\left(x-8\right)\left(x+8\right)}=\frac{x}{x-8}\)

\(\Leftrightarrow A=\frac{x}{x-8}.\left(x-8\right)\cdot\left(x+8\right)\)

\(\Leftrightarrow A=x\left(x+8\right)\)

Vậy...

2/ \(A=\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)

Vậy...

3/ \(M=\frac{4}{x^2+4x+7}=\frac{4}{\left(x^2+4x+4\right)+3}=\frac{4}{\left(x+2\right)^2+3}\)

Với mọi x ta có :

\(\left(x+2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+3\ge3\)

\(\Leftrightarrow\frac{4}{\left(x+2\right)^2+3}\le\frac{4}{3}\)

\(\Leftrightarrow M\le\frac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=-2\)

Vậy....

5/ \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)

\(=\frac{1}{x-y}-\frac{1}{y-z}+\frac{1}{y-z}-\frac{1}{z-x}+\frac{1}{z-x}-\frac{1}{x-y}\)

\(=0\)

Vậy...

Câu 1: Trong các phương trình sau, phương trình bậc nhất 1 ẩn là: A. x 2 - 3 = 0; B. 2 1 x + 2 = 0 ; C. x + y = 0 ; D. 0x + 1 = 0 Câu 2: Giá trị x = - 4 là nghiệm của phương trình: A. -2,5x + 1 = 11; B. -2,5x = -10; C. 3x – 8 = 0; D. 3x – 1 = x + 7 Câu 3: Tập nghiệm của phương trình (x + 3 1 )(x – 2 ) = 0 là: A. S =   3 1 ; B. S = 2 ; C. S =    2; 3 1 ; D. S =   2; 3 1 Câu 4: Điều kiện xác...
Đọc tiếp

Câu 1: Trong các phương trình sau, phương trình bậc nhất 1 ẩn là:
A. x
2
- 3 = 0; B. 2
1
x + 2 = 0 ; C. x + y = 0 ; D. 0x + 1 = 0

Câu 2: Giá trị x = - 4 là nghiệm của phương trình:
A. -2,5x + 1 = 11; B. -2,5x = -10; C. 3x – 8 = 0; D. 3x – 1 = x + 7
Câu 3: Tập nghiệm của phương trình (x + 3
1
)(x – 2 ) = 0 là:

A. S = 

3
1
; B. S =
2
; C. S = 


2;
3
1
; D. S = 

2;
3
1

Câu 4: Điều kiện xác định của phương trình 0
3
1
12



x
x
x
x

là:

A. 2
1
x
hoặc
3x
; B. 2
1
x
; C. 2
1
x

3x
; D.
3x
;

Câu 5: Trong các cặp phương trình sau, cặp phương trình nào tương đương:
A. x = 1 và x(x – 1) = 0 B. x – 2 = 0 và 2x – 4 = 0
C. 5x = 0 và 2x – 1 = 0 D. x 2 – 4 = 0 và 2x – 2 = 0
Câu 6: Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?
A. x 2 - 2x + 1 B. 3x -7 = 0
C. 0x + 2 = 0 D.(3x+1)(2x-5) = 0
Câu 7: Với giá trị nào của m thì phương trình m(x – 3) = 6 có nghiệm x = 5 ?
A. m = 2 B. m = – 2 C. m = 3 D. m = – 3
Câu 8: Giá trị x = 0 là nghiệm của phương trình nào sau đây:
A. 2x + 5 +x = 0 B. 2x – 1 = 0
C. 3x – 2x = 0 D. 2x 2 – 7x + 1 = 0
Câu 9: Phương trình x 2 – 1 = 0 có tập nghiệm là:
A. S =  B. S = {– 1} C. S = {1} D. S = {– 1; 1}
Câu 10: Điều kiện xác định của phương trình

25
1
3

x
xx


 là:

A. x ≠ 0 B. x ≠ – 3 C. x ≠ 0; x ≠ 3 D. x ≠ 0; x ≠ – 3
Câu 11: Số nào sau đây là nghiệm của phương trình 2x 5 – 5x 2 + 3 = 0 ?
A. -1 B. 1 C. 2 D. -2
Câu 12: Phương trình nào sau đây tương đương với phương trình 2x – 6 = 0
A. x=3 B. x=-3 C. x=2 D. x=-2
Câu 13: Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn.
A. x 2 + 2x + 1 = 0 B. 2x + y = 0 C. 3x – 5 = 0 D. 0x + 2 = 0
Câu 14: Nhân hai vế của phương trình
1
x1
2
với 2 ta được phương trình nào sau đây?

A. x = 2 B. x = 1 C. x = -1 D. x = -2
Câu 15: Phương trình 3x – 6 = 0 có nghiệm duy nhất
A. x = 2 B. x = -2 C. x = 3 D. x = -3
Câu 16: Điều kiện xác định của phương trình
x2
4
x5


 là:

A. x  2 B. x  5 C. x  -2 D. x  -5
Câu 17: Để giải phương trình (x – 2)(2x + 4) = 0 ta giải các phương trình nào sau đây?
A. x + 2 = 0 và 2x + 4 = 0 B. x + 2 = 0 và 2x – 4 = 0
C. x - 2 = 0 và 2x – 4 = 0 D. x – 2 = 0 và 2x + 4 = 0
Câu 18: Tập nghiệm của phương trình 2x – 7 = 5 – 4x là:
A. S2 B. S1 C. S2 D. S1
Câu 19: Trong các phương trình sau, phương trình nào tương đương với phương trình
2x-4=0 ?
A. 2x = – 4 B. (x – 2)(x 2 + 1) = 0 C. 4x + 8 = 0 D. – x – 2 = 0
Câu 20 : Với giá trị nào của m thì phương trình x(m – 2) = 8 có nghiệm x = 4 ?
A. m = 2 B. m = – 2 C. m = 4 D. m = – 4

0
20 tháng 12 2018

Đkxđ x#2

Phân thức đối là 4-x/2x-8

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

23 tháng 12 2023

Câu 5: B

Câu 6: 

a: ĐKXĐ: \(x-2\ne0\)

=>\(x\ne2\)

b: ĐKXĐ: \(x+1\ne0\)

=>\(x\ne-1\)

8:

\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)

\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)

7: 

\(\dfrac{8x^3yz}{24xy^2}\)

\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)

\(=\dfrac{x^2z}{3y}\)

31 tháng 1 2019

a/  ĐKXĐ: \(x\ne3;-3;2\)

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{3-x}=\frac{x+2}{x+3}-\frac{5}{x^2+3x-2x-6}+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x^2-2x\right)+\left(3-6x\right)}\)

\(+\frac{-1}{x-3}=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}+\frac{-1}{x-3}\)

Đến đây bạn tự quy đồng nhé! Chúc sớm giải được. Cố lên!!!!!

1 tháng 12 2017

\(\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{5x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

a ) ĐKXĐ : \(x\ne0,x\ne-5\)

b ) Rút gọn trước cái đã

\(\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{5x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+10x^2+50x-10x-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+12x^2+35x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x+7\right)}{2x\left(x+5\right)}=\dfrac{x+7}{2x}\)

Khi \(A=1\), thì :

\(\dfrac{x+7}{2x}=1\Leftrightarrow x=7\)

Khi A = 3, thì :

\(\dfrac{x+7}{2x}=3\Leftrightarrow x=-1.\)

Bài 2 :

a ) ĐKXĐ : x\(\ne-3;2\)

b ) \(\dfrac{x-2}{x+3}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}+\dfrac{1}{2-x}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)

c ) Khi \(A=-\dfrac{3}{4}\), thì :

\(\dfrac{x-4}{x-2}=-\dfrac{3}{4}\)

\(\Leftrightarrow4x-16=-3x+6\)

\(\Leftrightarrow x=\dfrac{22}{7}\)

d ) Ta có :

\(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)

Để A nguyên thi \(x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Thay vào rồi tìm ra nếu x có trong đkxđ thì loại .

e ) \(x^2-9=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Thay từng x vào A là tìm ra