Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:`4/(2x-1)>=0(x ne 1/2)`
Mà `4>0`
`<=>2x-1>0`
`<=>2x>1`
`<=>x>1/2`
Vậy `x>1/2` thì `sqrt{4/(2x-1)}` có nghĩa
\(DK:\left\{{}\begin{matrix}2x-1>0\\4\ge2x-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x\le\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in(\dfrac{1}{2};\dfrac{5}{2}]\) hay \(\dfrac{1}{2}< x\le\dfrac{5}{2}\)
đkxđ:
\(x^2-4x+3\ge0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
Vậy đkxđ của biểu thức là \(\left[{}\begin{matrix}x\ge3\\x\le1\end{matrix}\right.\)
Để \(\sqrt{\frac{x+3}{7-x}}\)có nghĩa thì x + 3 và 7 - x cùng dấu
\(TH1:\hept{\begin{cases}x+3\ge0\\7-x>0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-3\\x< 7\end{cases}}\Rightarrow-3\le x< 7\)(Vì x = 7 thì bt không có nghĩa)
\(TH2:\hept{\begin{cases}x+3\le0\\7-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-3\\x>7\end{cases}}\left(L\right)\)
Vậy \(-3\le x< 7\)
a) \(\sqrt{3x-4}\) xác định \(\Leftrightarrow3x-4\ge0\Leftrightarrow3x\ge4\Leftrightarrow x\ge\dfrac{4}{3}\)
b) \(\dfrac{1}{\sqrt{x-4}}\) xác định \(\Leftrightarrow x-4>0\Leftrightarrow x>4\)
4) ĐKXĐ: \(x\le\dfrac{7}{3}\)
5) ĐKXĐ: \(x>\dfrac{9}{4}\)
6) ĐKXĐ: -2<x<2
7) ĐKXĐ: \(x\ge-\dfrac{6}{5}\)
8) ĐKXĐ: \(x\in R\)
9) \(x\in\varnothing\)
10) ĐKXĐ: \(x=\dfrac{2}{3}\)
11) ĐKXĐ: \(x\ge1\)
12) ĐKXĐ: \(x\in R\)