K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x^2+2x+3<>0

=>\(x\in R\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:

Ta thấy: $x^2+2x+3=(x+1)^2+2\geq 2>0$ với mọi $x\in\mathbb{R}$

Tức là $x^2+2x+3\neq 0$ với mọi $x\in\mathbb{R}$

Do đó ĐKXĐ là $x\in\mathbb{R}$

9 tháng 11 2021

1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)

2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)

9 tháng 11 2021

mik cam on bn

a)\(x\in R\)

b)\(x\ne1\)

c) \(x\notin\left\{1;2\right\}\)

d) \(x\notin\left\{3;-3\right\}\)

e) \(x\ne1\)

f) \(x\notin\left\{2;3\right\}\)

21 tháng 2 2021

bạn trình bày rõ ràng hơn được hông??

hihi

15 tháng 12 2023

a: ĐKXĐ: \(3x^2+6x\ne0\)

=>\(x^2+2x\ne0\)

=>\(x\cdot\left(x+2\right)\ne0\)

=>\(x\notin\left\{0;-2\right\}\)

b: ĐKXĐ: \(x^3+64\ne0\)

=>\(x^3\ne-64\)

=>\(x\ne-4\)

c: ĐKXĐ: \(x^2-1\ne0\)

=>\(x^2\ne1\)

=>\(x\notin\left\{1;-1\right\}\)

25 tháng 2 2021

`a,x^3-8 ne 0`

`=>x^3 ne 8`

`=>x ne 2`

`b,2x^2+5x+3 ne 0`

`=>2x^2+2x+3x+3 ne 0`

`=>2x(x+1)+3(x+1) ne 0`

`=>(x+1)(2x+3) ne 0`

`=>x ne -1,-3/2`

`c,x^2-4 ne 0`

`=>x^2 ne 4`

`=>x ne 2,-2`

a) ĐK:

 \(x^3-8\ne0\\ \Leftrightarrow x\ne2\)

b) ĐK:

 \(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)

c) ĐK:

\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)

1 tháng 4 2022

x khác 1; -1 á bạn

1 tháng 4 2022

x≠+-1

25 tháng 2 2021

`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`

`<=>x ne 4,x me -1`

`b,ĐKXĐ:4x^2-25 ne 0`

`<=>(2x-5)(2x+5) ne 0`

`<=>x ne +-5/2`

`c,ĐKXĐ:8x^3+27 ne 0`

`<=>8x^3 ne -27`

`<=>2x ne -3`

`<=>x ne -3/2`

`d,2x+2 ne 0,4y^2-9 ne 0`

`<=>2x ne -2,(2y-3)(2y+3) ne 0`

`<=>x ne -1,y ne +-3/2`

b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)

d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)

22 tháng 12 2020

a) ĐKXĐ: \(x\ne-7\)

b) ĐKXĐ: \(x\in R\)

23 tháng 12 2020

a) Để giá trị của \(\dfrac{2x^2+7}{3x+21}\) được xác định thì 3x + 21 \(\ne\) 0

=> 3(x+7) \(\ne\) 0

=> x+7 \(\ne\) 0

=> x \(\ne\) -7

Vậy để giá trị của biểu thức \(\dfrac{2x^2 +7}{3x+21}\) được xác định thì x \(\ne\) -7

b) Để giá trị của \(\dfrac{x+5}{-12+6}\) được xác định thì x \(\in\) R ( vì -12+6 \(\ne\) 0)

2 tháng 12 2023

\(a,ĐKXĐ:\\ \left[{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\\ b,P=0\\ \Leftrightarrow\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=0\\ \Leftrightarrow\dfrac{3x\left(x+1\right)}{3\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x}{x-2}=0\\ \Leftrightarrow x=0\left(TM\right)\)

Vậy tại X=0 thì P=0

2 tháng 12 2023

a) Để P xác định thì: \(\left[{}\begin{matrix}x+1\ne0\\2x-6\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)

b) \(P=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)

Để \(P=0\) thì: \(\dfrac{3x}{2x-6}=0\)

\(\Leftrightarrow3x=0\)

\(\Leftrightarrow x=0\left(tm\right)\)