\(\sqrt{\frac{1}{x-1}}\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Có đặt cái nick name mak mất dạy VC

a

Để \(\sqrt{\frac{1}{x-1}}\) xác định thì \(\frac{1}{x-1}\ge0\)

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

c

Để \(\sqrt{x^2+1}\) xác định thì \(x^2+1\ge0\) ( điều này luôn đúng )

Vậy \(\sqrt{x^2+1}\) xác định với mọi x

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

9 tháng 8 2020

Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó 

\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

b)

\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)

\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)

Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)

9 tháng 10 2020

a) đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có:

\(A=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{x-1}\right)\div\frac{1}{\sqrt{x}+1}\)

\(A=\frac{\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)\)

\(A=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+1\right)\)

\(A=\frac{1}{\sqrt{x}-1}\)

9 tháng 10 2020

c) Ta có; \(A=-\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{\sqrt{x}-1}=-\frac{1}{2}\)

\(\Leftrightarrow\sqrt{x}-1=-2\)

\(\Leftrightarrow\sqrt{x}=-1\) (vô lý)

Vậy không tồn tại x để A = -1/2

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

b) ĐKXĐ: $3+2x>0\Leftrightarrow x>\frac{-3}{2}$

c) ĐKXĐ: $x^2-4\geq 0\Leftrightarrow (x-2)(x+2)\geq 0$

$\Leftrightarrow x\geq 2$ hoặc $x\leq -2$

d)

ĐKXĐ\(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}\neq 2\\ x+1>0\\ x\neq 0\\ \sqrt{x}\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\neq 4\\ x\neq 9\end{matrix}\right.\)

e)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ 7-\sqrt{x}>0\end{matrix}\right.\Leftrightarrow 0\leq x< 49\)

f)

\(\left\{\begin{matrix} 5-x\neq 0\\ \frac{x+3}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x+3\geq 0\\ 5-x>0\end{matrix}\right.\\ \left\{\begin{matrix} x+3\leq 0\\ 5-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow -3\leq x< 5\)