Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Để biểu thức \(\sqrt{\left(x^2+1\right)\left(2x+3\right)}\) có nghĩa thì \(\left(x^2+1\right)\cdot\left(2x+3\right)\ge0\)
\(\Leftrightarrow2x+3\ge0\)(Vì \(x^2+1\ge0\forall x\))
\(\Leftrightarrow2x\ge-3\)
hay \(x\ge-\frac{3}{2}\)
Vậy: Khi \(x\ge-\frac{3}{2}\) thì biểu thức \(\sqrt{\left(x^2+1\right)\left(2x+3\right)}\) có nghĩa
c) Ta có: \(x^2-3x+5\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}>0\forall x\)
hay \(x^2-3x+5>0\forall x\)
Vậy: \(\sqrt{x^2-3x+5}\) luôn xác định được \(\forall x\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
a) Điều kiện xác định của biểu thức:
2x2 ≠ 0
<=> x ≠ 0
b) Điều kiện để biểu thức xác định:
(x-1)2 ≠ 0
<=> x-1 ≠ 0
<=> x ≠ 1
a) ĐKXĐ:\(\left\{{}\begin{matrix}\frac{1}{2x^2}\ge0\\2x^2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2>0\\x\ne0\end{matrix}\right.\Leftrightarrow x\ne0\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ne0\\\frac{3x+2}{\left(x-1\right)^2}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\3x+2\ge0\end{matrix}\right.\) (vì \(\left(x-1\right)^2>0,\forall x\ne1\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-\frac{2}{3}\end{matrix}\right.\Leftrightarrow-\frac{2}{3}\le x\ne1\)
a)biểu thức có nghĩa khi :
-x4 -2 > 0 <=> - x4 > 2
a) \(\text{ĐKXĐ:}3x+1\ge0\Leftrightarrow x\ge-\frac{1}{3}\)
b) \(\text{ĐKXĐ:}\left(x+2\right)\left(2x-3\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le-2\\x\ge\frac{3}{2}\end{cases}}\)
Đúng không ta?:3