K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

10 tháng 2 2018

a)ĐKXĐ : x≠-3;2

b)A=x+1/x+3 - 10/(x^2+3x)-(2x+6) + 5/x-2

A=x+1/x+3  -10/x ×( x+3)-2 × (x+3) + 5/x-2

A= x+1/x+3 - 10/(x-2)(x+3).  + .5/x-2

A= (x+1)(x-2) /(x-2)(x+3). - 10/(x-2)(x+3)  + 5(x+3)/(x-2)(x+3)

A= x^2-2x+x-2-10+5x+15/(x-2)(x+3)

A= x^2+4x+3/(x-2)(x+3)

A= (x^2+x)+(3x+3)/ (x-2)(x+3)

A= x×(x+1) + 3×(x+1) / (x-2)(x+3)

A= (x+3)(x+1)/(x-2)(x+3)

A=x+1/x-2

c) để A>0 thì x+1/x-2>0

Để x+1/x-2>0 thì x+1 và x-2 phải cung dấu

Ta có hai trường hợp

TH1: x+1<0 suy ra x<-1

       x-2<0.  suy ra x<1

Đoi chiếu ĐKXĐ ta có x<1;x≠-3

TH2: x+1>0 suy ra x>-1

         x-2>0 suy ra x>2

=) x>-1; x≠2

(Đây là toán lớp 8 chứ)

20 tháng 8 2017

Cho biểu thức trong dấu căn lớn hơn hoặc bằng 0 để tìm đk của x.

4 tháng 6 2019

a) \(\sqrt{-7x}\)

\(ĐKXĐ:x\le0\)

b) \(-\sqrt{\frac{x-2}{-5}}\)

\(ĐKXĐ:x\le2\)

c) \(\sqrt{\frac{3}{8-x}}\)

\(ĐKXĐ:x\le8\)

8 tháng 6 2017

bạn đặt \(\sqrt{x}=a\) , a> 0 

Thay \(\sqrt{x}=a\)  vô  biểu thức => rút gọn ra => thay trở lại  

8 tháng 6 2017

giải chi tiết giúp mình đc không ạ?

a)ĐKXĐ :\(x\ge0;x\ne9\)

khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)

b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
 

Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)

16 tháng 6 2019

giúp mình vs! Mình đang cần gấp

a)biểu thức có nghĩa khi :

-x4 -2 > 0 <=> - x4 > 2 

a: ĐKXĐ: \(-\dfrac{\sqrt{6}}{2}\le x\le\dfrac{\sqrt{6}}{2}\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

c: ĐKXĐ: \(-\sqrt{5}< x< \sqrt{5}\)

d: ĐKXĐ: \(x\le\sqrt[3]{-5}\)

6 tháng 8 2019

ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)

\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)