Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)
\(=4m^2+12m+9-16m-8\)
\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có:
\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=4m+2\)
\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)
\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)
\(\Leftrightarrow40m^2-112m-98=0\)
\(\Leftrightarrow40m^2-140m+28m-98=0\)
=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)
=>(2m-7)(20m+14)=0
=>m=7/2 hoặc m=-7/10
\(\Delta'=\left(m+1\right)^2-\left(m^2-2m+5\right)=4\left(m-1\right)\)
Pt có 2 nghiệm pb khi \(m-1>0\Rightarrow m>1\)
Khi đó ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)>0\\x_1x_2=m^2-2m+5=\left(m-1\right)^2+4>0\end{matrix}\right.\)
\(\Rightarrow\) Cả 2 nghiệm của pt đều dương \(\Rightarrow\left\{{}\begin{matrix}2x_1+m>0\\x_2+2m>0\end{matrix}\right.\) (1)
Do đó:
\(\sqrt{4x_1^2+4mx_1+m^2}+\sqrt{x^2_2+4mx_2+4m^2}=7m+2\)
\(\Leftrightarrow\sqrt{\left(2x_1+m\right)^2}+\sqrt{\left(x_2+2m\right)^2}=7m+2\)
\(\Leftrightarrow\left|2x_1+m\right|+\left|x_2+2m\right|=7m+2\)
\(\Leftrightarrow2x_1+m+x_2+2m=7m+2\) (theo (1))
\(\Leftrightarrow2x_1+x_2=4m+2\)
Kết hợp với hệ thức Viet ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\2x_1+x_2=4m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2m\\x_2=2\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-2m+5\)
\(\Rightarrow4m=m^2-2m+5\)
\(\Leftrightarrow m^2-6m+5=0\Rightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=5\end{matrix}\right.\)
x-y=4+2m và 4x+y=3m-4
=>5x=5m và x-y=2m+4
=>x=m và y=m-2m-4=-m-4
xy=-5
=>m(-m-4)=-5
=>m^2+4m=5
=>m^2+4m-5=0
=>(m+5)(m-1)=0
=>m=1 hoặc m=-5
\(x^2-\left(m+1\right)x+m+4=0\left(1\right)\)
\(\Rightarrow\Delta>0\Leftrightarrow\left(m+1\right)^2-4\left(m+4\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>5\end{matrix}\right.\)\(\left(2\right)\)
\(ddkt-thỏa:\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)
\(x1=0\Rightarrow\left(1\right)\Leftrightarrow m=-4\Rightarrow\left(1\right)\Leftrightarrow x^2+3x=0\Leftrightarrow\left[{}\begin{matrix}x1=0\\x2=-3< 0\left(loại\right)\end{matrix}\right.\)
\(x1\ne0\) \(\Rightarrow0< x1< x2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1+x2>0\\x1x2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\m+4>0\end{matrix}\right.\)\(\Rightarrow m>-1\)\(\left(3\right)\)
\(\left(2\right)\left(3\right)\Rightarrow m>5\)
\(\Rightarrow\sqrt{x1}+\sqrt{x2}=2\sqrt{3}\)
\(\Leftrightarrow x1+x2+2\sqrt{x1x2}=12\Leftrightarrow m+1+2\sqrt{m+4}=12\)
\(\Leftrightarrow m+4+2\sqrt{m+4}-15=0\)
\(đặt:\sqrt{m+4}=t>5\Rightarrow t^2+2t-15=0\Leftrightarrow\left[{}\begin{matrix}t=-5\left(ktm\right)\\t=3\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow m\in\phi\)
Để pt có 2 nghiệm pb
\(\left(m+1\right)^2-4\left(m+4\right)=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m+4\end{matrix}\right.\)
Ta có : \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=12\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=12\)
Thay vào ta được \(m+1+2\sqrt{m+4}=12\Leftrightarrow2\sqrt{m+4}=11-m\)đk : m >= -4
\(\Leftrightarrow4\left(m+4\right)=121-22m+m^2\Leftrightarrow m^2-26m+105=0\)
\(\Leftrightarrow m=21\left(ktm\right);m=5\left(ktm\right)\)
các bạn cứ coi như đã khoàn thành xong phần rút gọn biểu thức để làm nhé !
ĐKXĐ: \(x\ge0;x\ne25\)
\(B=\left(\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)
\(=\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}+3}\)
Ta có \(A+B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{1}{\sqrt{x}+3}=\frac{2\sqrt{x}+1}{\sqrt{x}+3}=2-\frac{5}{\sqrt{x}+3}\)
Để A+B nguyên \(\Rightarrow5⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3=Ư\left(5\right)\)
Mà \(\sqrt{x}+3\ge3\)
\(\Rightarrow\sqrt{x}+3=5\Rightarrow x=4\)
Bài 2:
Để hàm số đã cho là bậc nhất \(\Leftrightarrow2m-5\ne0\Rightarrow m\ne\frac{5}{2}\)
Để hàm số đã cho đồng biến \(\Leftrightarrow2m-5>0\Rightarrow m>\frac{5}{2}\)
Để hàm số đã cho nghịch biến \(\Leftrightarrow2m-5< 0\Rightarrow m< \frac{5}{2}\)
Lời giải:
Ta có:\(y^2+2\sqrt{2020}y+2022=(y^2+2\sqrt{2020}y+2020)+2=(y+\sqrt{2020})^2+2\geq 2(1)\)
Áp dụng BĐT Bunhiacopxky:
$(\sqrt{x-1}+\sqrt{3-x})^2\leq (x-1+3-x)(1+1)=4$
$\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2(2)$
Từ $(1); (2)\Rightarrow \sqrt{x-1}+\sqrt{3-x}\leq 2\leq y^2+2\sqrt{2020}y+2022$
Dấu "=" xảy ra khi mà: \(\left\{\begin{matrix} \frac{x-1}{1}=\frac{3-x}{1}\\ y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=-\sqrt{2020}\end{matrix}\right.\)
ĐKXĐ: \(x\ge0\)
\(\sqrt{x}+4=m\sqrt{x}+5m\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x}=4-5m\)
- Với \(m=1\) không tồn tại x
- Với \(m\ne1\Rightarrow\sqrt{x}=\dfrac{4-5m}{m-1}\)
Do \(\sqrt{x}\ge0\Rightarrow\dfrac{4-5m}{m-1}\ge0\Rightarrow\dfrac{4}{5}\le m< 1\)