K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

a, m2x - 1 < mx + m

⇔ (m2 - m)x < m + 1

Bất phương trình vô nghiệm khi 

\(\left\{{}\begin{matrix}m^2-m=0\\m+1\le0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Vậy phương trình có nghiệm với ∀m ∈ R

b, (m2 + 9)x + 3 ≥ m - 6mx

⇔ (m2 + 6m + 9)x ≥ m + 3

Phương trình có nghiệm đúng với ∀x khi m = -3

c, 8m2x - 4m2 ≥ 4m2x + 5mx + 9x - 12

⇔ 4m2x - 5mx - 9x ≥ 4m2 - 12

⇔ (4m2 - 5m - 9)x ≥ 4m2 - 12

Bất phương trình có nghiệm đúng với ∀x khi m = -1

 

 

 

NV
30 tháng 4 2021

Pt đã cho có 2 nghiệm trái dấu khi và chỉ khi:

\(ac< 0\Leftrightarrow1\left(m^2-4m\right)< 0\)

\(\Leftrightarrow0< m< 4\)

30 tháng 4 2021

cảm ơn nhìu ạ !

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

3 tháng 1 2021

Phương trình đã cho tương đương 

\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt thì

\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)

⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)

( ( ( 0 15 33 +∞ Dựa vào trục số, (1) ⇔ m > 0

Vậy điều kiện của m là m > 0 

Sai thì thứ lỗi ạ !