Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2+2mx-2m=0\)
\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)
Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)
a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\)
Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)
Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu
b.
Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)
\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn
Em coi lại đề bài
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\Delta'=m^2-m\left(m-1\right)>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)
Đặt \(f\left(x\right)=\left(m-1\right)x^2-2mx+m\)
Để pt có 2 nghiệm thỏa mãn \(x_1< 1< x_2\)
\(\Leftrightarrow\left(m-1\right).f\left(1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(m-1-2m+m\right)< 0\)
\(\Leftrightarrow1-m< 0\Rightarrow m>1\)
Vậy \(m>1\)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
1: TH1: m=0
=>-x-2=0
=>x=-2(loại)
TH2: m<>0
\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)
=4m^2-4m+1-4m^2+8m
=4m+1
Đểphương trình có 2 nghiệm pb thì 4m+1>0
=>m>-1/4
2: TH1: m=1
Pt sẽ là -2x-1=0
=>x=-1/2(nhận)
TH2: m<>1
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)
=4m^2-4(m^2-3m+2)
=-4(-3m+2)
=12m-8
Để phương trình có 1 nghiệm thì 12m-8=0
=>m=2/3
Áp dụng định lý Viet:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-4m+3}{2}\\x_1.x_2=\frac{1-2m}{2}\end{matrix}\right.\)
Có x1.x2 <0 theo đề bài nên \(\frac{1-2m}{2}\)<0 nên m>\(\frac{1}{2}\)
Có: (x1 - 1) (x2 - 1) = x1x2 -(x1+x2) +1 <0
Thay giá trị bên trên vào suy ra : m<0
=> \(\left[{}\begin{matrix}m< 0\\m>\frac{1}{2}\end{matrix}\right.\)
(Không biết đúng không)
Đặt \(f\left(x\right)=2x^2+\left(4m-3\right)x+1-2m=0\)
Do \(a=2>0\) , để pt có 2 nghiệm thỏa mãn \(x_1< 0< 1< x_2\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)< 0\\f\left(1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-2m< 0\\2+1.\left(4m-3\right)+1-2m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-2m< 0\\2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{1}{2}\\m< 0\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại m thỏa mãn