K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

+ Tìm điều kiện xác định:

Biểu thức xác định khi tất cả các phân thức đều xác định.

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 – 10x ≠ 0

⇔ x(x – 10) ≠ 0

⇔ x ≠ 0 và x – 10 ≠ 0

⇔ x ≠ 0 và x ≠ 10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 + 10x ≠ 0

⇔ x(x + 10) ≠ 0

⇔ x ≠ 0 và x + 10 ≠ 0

⇔ x ≠ 0 và x ≠ -10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 luôn xác định vì x2 + 4 > 0 với mọi x ∈ R.

Vậy điều kiện xác định của biểu thức là x ≠ 0 và x ≠ ±10

+ Rút gọn biểu thức:

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Tại x = 20040, giá trị biểu thức bằng Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{0;10;-10\right\}\)

ĐKXĐ: \(x\notin\left\{0;10;-10\right\}\)

\(A=\left(\dfrac{5x+2}{x\left(x-10\right)}+\dfrac{5x-2}{x\left(x+10\right)}\right)\cdot\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)

\(=\dfrac{5x^2+50x+2x+20+5x^2-50x-2x+20}{x\left(x-10\right)\left(x+10\right)}\cdot\dfrac{\left(x-10\right)\left(x+10\right)}{x^2+4}\)

\(=\dfrac{10x^2+40}{x^2+4}\cdot\dfrac{1}{x}=\dfrac{10}{x}\)

Thay x=20040 vào A, ta được:

\(A=\dfrac{10}{20040}=\dfrac{1}{2004}\)

24 tháng 1 2022

+ Tìm điều kiện xác định:

Biểu thức xác định khi tất cả các phân thức đều xác định.

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 – 10x ≠ 0

⇔ x(x – 10) ≠ 0

⇔ x ≠ 0 và x – 10 ≠ 0

⇔ x ≠ 0 và x ≠ 10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 + 10x ≠ 0

⇔ x(x + 10) ≠ 0

⇔ x ≠ 0 và x + 10 ≠ 0

⇔ x ≠ 0 và x ≠ -10

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 luôn xác định vì x2 + 4 > 0 với mọi x ∈ R.

Vậy điều kiện xác định của biểu thức là x ≠ 0 và x ≠ ±10

+ Rút gọn biểu thức:

Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Tại x = 20040, giá trị biểu thức bằng Giải bài 61 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

x2−10x=x(x−10)≠0 khi x≠0;x−10≠0

Hay x≠0;x≠10

x2+10x=x(x+10)≠0 khi x≠0;x+10≠0

Hay x≠0;x≠−10

x2+4≥4

Vậy điều kiện của biến x để biểu thức đã cho được xác định là

x≠−10,x≠0,x≠10

Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :

(5x+2x2−10x+5x−2x2+10x).x2−100x2+4

=

23 tháng 11 2018

ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0

<=> x khác 0 và x khác +-10.

\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)

= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)

= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)

= \(\dfrac{10x^2+40}{x(x^2+4)}\)

= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)

= \(\dfrac{10}{x}\)

Thay x = 20040 vào biểu thức, ta có:

\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

1 tháng 10 2017

a) Biểu thức trên xác định khi tất cả các phân thức đều xác định

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ 2x – 2 ≠ 0 ⇔ 2x ≠ 2 ⇔ x ≠ 1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ x2 – 1 ≠ 0 ⇔ x2 ≠ 1 ⇔ x ≠ 1 và x ≠ -1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8 xác định ⇔ 2x + 2 ≠ 0 ⇔ 2x ≠ -2 ⇔ x ≠ -1

Vậy điều kiện xác định của biểu thức là x ≠ 1 và x ≠ -1.

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 60 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến.

22 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

26 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

21 tháng 10 2018

a) Tìm mẫu thức chung rồi xét mẫu thức chung khác 0 rút được x ≠     ± 1 .

b) Thực hiện phép tính để thu gọn M chúng ta có M = 1 3