Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức 5 x 3 - 7 x 2 + x chia hết cho 3 x n nên mỗi hạng tử của đa thức chia hết cho x n
=> hạng tử x – có số mũ nhỏ nhất của đa thức chia hết cho 3 x n
Do đó, x : x n ⇒ 0 ≤ x ≤ 1 . Vậy n ∈ {0; 1}
\(\dfrac{3x^{n+1}y^2-2x^5y^n+x^4y^2}{2x^4y^{n-2}}=\dfrac{3}{4}x^{n+1-4}\cdot y^{2-n+2}-x^{5-4}\cdot y^{n-n+2}+\dfrac{1}{2}x^{4-4}\cdot y^{2-n+2}\)
\(=\dfrac{3}{4}x^{n-3}y^{4-n}-xy^2+\dfrac{1}{2}y^{4-n}\)
Để đây là phép chia hết thì n-3>=0 và 4-n>=0
=>3<=n<=4
=>n=3;n=4
Để phép chia x n + 3 y 6 : x 9 y n là phép chia hết thì
9 ≤ n + 3 n ≤ 6 n ∈ N ⇔ n ≥ 6 n ≤ 6 n ∈ N
=> n = 6
Đáp án cần chọn là: D
\(pkkikkkkkk\min\limits_{kkkkk\max\limits_{ }kkkk\lim\limits_{\rightarrow}kkkk\sqrt{ }kkk\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }k\sqrt{ }k\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }k\sqrt{ }\sqrt{ }\sqrt{ }\sqrt{ }}\)
x 4 : x n = x 4 - n là phép chia hết nên 4 – n ≥ 0 ⇒ 0 ≤ n ≤ 4
suy ra: n ∈ {0; 1; 2; 3; 4}
5 x n y 3 : 4 x 2 y 2 = 5/4 x n : x 2 y 3 : y 2 = 5/4 x n - 2 . y là phép chia hết
Suy ra: n – 2 ≥ 0 ⇒ n ≥ 2
Vì đa thức 13 x 4 y 3 - 5 x 3 y 3 + 6 x 2 y 2 chia hết cho 5 x n y n nên mỗi hạng tử của đa thức trên chia hết cho 5 x n y n Do đó, hạng tử 6 x 2 y 2 chia hết cho 5 x n y n ⇒ 0 ≤ n ≤ 2 . Vậy n ∈ {0;1;2}
x n y n + 1 : x 2 y 5 = x n : x 2 y n + 1 : y 5 = x n - 2 . y n - 4 là phép chia hết