K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

Ta có: 

A = k4 + 2k³ - 16k² - 2k + 15 

= k4 + 5k³ - 3k³ - 15k² - k² - 5k + 3k + 15 

= ( k³ - 3k² - k + 3 ).( k + 5) 

= (k² - 1).(k - 3).(k + 5) 

Để A ⁞ 16 

thì có nhiều trường hợp xảy ra. 

TH1: A = 0 <=> k = { ±1 ; 3 ; - 5} 

TH2: 

Với k là số lẻ thì (k² - 1 ) ⁞ 8 

cái này mình sẽ cm: 

k² - 1 = (k - 1).(k + 1) 

Với k là số lẻ thì k -1 và k + 1 là 2 số chẵn liên tiếp. Trong đó có 1 số chia hết cho 2 và 1 số chia 

hết cho 4 => (k - 1).(k + 1) ⁞ 8 

Đồng thời, với k lẻ thì k -1 hoặc k + 5 đều chia hết cho 2. 

=> Tích sẽ chia hết cho 8 x 2 = 16 

Vậy A ⁞ 16 <=> k là số lẻ. 

Dễ thấy, TH2 bao hàm TH1 => Ta kết luận k là số lẻ thì A ⁞ 16 

***Kiểm tra: 

Với k là số chẵn => (k² - 1) là số lẻ 

k - 3 là số lẻ 

k + 5 cũng là số lẻ 

=> A = (k² - 1).(k - 3).(k + 5) là số lẻ ko chia hết cho 16. 

28 tháng 9 2020

Ta có f(k) = k3 + 2k2 + 15 

     = (k3 + 9k2 + 27k + 27) - (7k2 + 27k + 12)

     = (k + 3)3 - (7k2 + 27k + 18) + 6

     = (k + 3)3 - (7k2 + 21k + 6k + 18) + 6

     = (k + 3)3 - [7k(k + 3) + 6(k + 3)] + 6

     = (k + 3)3 - (7k + 6)(k + 3) + 6

     = (k + 3)[(k + 3)2 - 7k - 6) + 6

Vì (k + 3)[(k + 3)2 - 7k - 6) \(⋮\)k + 3

=> f(k) \(⋮\)g(k) khi 6 \(⋮k+3\)

=> \(k+3\inƯ\left(6\right)\)(k là số tự nhiên)

=> \(k+3\in\left\{3;6\right\}\)(Vì k \(\ge\) 0 => k + 3 \(\ge\) 3)

=> \(k\in\left\{0;3\right\}\)

Vậy  \(k\in\left\{0;3\right\}\)thì  f(k) \(⋮\)g(k)

16 tháng 11 2019

mình thấy hơi khó

a: \(A=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(B=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24