Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ của phân thức là :
\(3x-7\ne0\Leftrightarrow3x\ne7\Leftrightarrow x\ne\dfrac{7}{3}\)
b, ĐKXĐ của phân thức là :
\(x+z\ne0\Leftrightarrow x\ne-z\)
c,ĐKXĐ của phân thức là :
\(x^2-2x\ne0\Leftrightarrow x\left(x-2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
d,ĐKXĐ của phân thức là :
\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
e,ĐKXĐ của phân thức là :
\(x^2+3\ne0\) ( luôn đúng )
\(\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{\left(x^3-3x^2\right)-\left(x-3\right)}{\left(x^2-3x\right)}\)
=\(\dfrac{x^2\left(x-3\right)-\left(x-3\right)}{x\left(x-3\right)}=\dfrac{\left(x-3\right)\left(x^2-1\right)}{x\left(x-3\right)}\)
=\(\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)
a: DKXĐ: x<>1; x<>-1
b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
ĐKXĐ : \(x\ne1;-1\)
\(A=\left(\dfrac{x}{x+1}+\dfrac{x}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)
\(\Leftrightarrow A=\left(\dfrac{x^2-x+x^2+x}{\left(x-1\right)\left(x+1\right)}\right)\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2x^2+2x+2x+2-4x}\right)\)
\(\Leftrightarrow A=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2+1\right)}=\dfrac{x^2}{x^2+1}\)
Ta thấy \(x^2>0\) \(\RightarrowĐPCM.\)
a, Do mẫu thức \(20\ne0\) với mọi x, suy ra phân thức trên xác định với mọi \(x\in R\)
b, Để phân thức \(\dfrac{8}{x+2004}\) xác định \(\Rightarrow x+2004\ne0\Rightarrow x\ne2004\)
c, Để phân thức \(\dfrac{4x}{3x-7}\) xác định\(\Rightarrow3x-7\ne0\Rightarrow x\ne\dfrac{7}{3}\)
d, Để phân thức \(\dfrac{x^2}{x+z}\) xác định\(\Rightarrow x+z\ne0\Rightarrow x\ne z\)