\(ax^{19}+bx^{94}+cx^{1994}⋮x^2+x+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

$ax^{19}+bx^{94}+cx^{1994}=a(x^{19}-x)+b(x^{94}-x)+c(x^{1994}-x^2)+ax+bx+cx^2$

$=ax(x^{18}-1)+bx(x^{93}-1)+cx^2(x^{1992}-1)+c(x^2+x+1)-cx-c+ax+bx$

Dễ thấy:

$x^{18}-1\vdots x^3-1\vdots x^2+x+1$

$x^{93}-1\vdots x^3-1\vdots x^2+x+1$

$x^{1992}-1\vdots x^3-1\vdots x^2+x+1$

Do đó $-cx-c+ax+bx=x(a+b-c)-c$ chính là đa thức dư khi thực hiện phép chia.

Để phép chia là chia hết thì $x(a+b-c)-c=0$ với mọi $x$

$\Leftrightarrow a+b-c=0$ và $c=0$

$\Leftrightarrow a+b=c=0$

 

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

31 tháng 8 2017

P(x) = ax^19 + bx^94 + cx^1994 = 
ax * [(x³)^6 - 1] + bx * [(x³)^31 - 1] + cx² * [(x³)^664 - 1] + c(x² + x + 1) + (a + b - c)x - c 
P(x) chia hết cho (x² + x + 1) khi và chỉ khi (a + b - c)x - c chia hết cho (x² + x + 1) => a + b - c = 0 và c = 0 
(đa thức chia hết cho đa thức bậc cao hơn khi và chỉ khi đó là đa thức 0) 
tức a + b = c = 0

31 tháng 8 2017

thanks

11 tháng 3 2020

a) A có nghĩa\(\Leftrightarrow\hept{\begin{cases}2-x\ne0\\2+x\ne0\\x-3\ne0\end{cases}}\Rightarrow x\ne\pm2;x\ne3\)

\(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{x^2+4x+4-4+4x-x^2+4x^2}{4-x^2}:\frac{x-3}{2-x}\)

\(=\frac{4x^2+8x}{4-x^2}.\frac{2-x}{x-3}\)

\(=\frac{4x\left(x+2\right)}{\left(2+x\right)\left(x-3\right)}=\frac{4x}{x-3}\)

b) \(A=1\Leftrightarrow4x=x-3\Leftrightarrow x=-1\)

c) \(A>0\Leftrightarrow\frac{4x}{x-3}>0\)

TH1: \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}}\Leftrightarrow x>3\)

TH2: \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)

Giúp mình với đúng mik tích cho :>>

Help me :<<<<<<<<<<<<<<<<<<<<

a) ĐKXĐ: x \(\ne\pm3\)

b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)

\(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)\(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)

c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)

Vậy ...

15 tháng 10 2018

\(\left(ax^2+bx+c\right)\left(x+1\right)=ax^3+\left(a+b\right)x^2+\left(b+c\right)x+c\)

đồng nhất đa thức trên với đa thức đã cho ta được

\(\left\{{}\begin{matrix}a=1\\a+b=8\\b+c=19\\c=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=7\\c=12\end{matrix}\right.\)

3 phần kia làm tương tự

18 tháng 10 2022

b: \(\left(ax^2+bx+c\right)\left(x+3\right)\)

\(=ax^3+3ax^2+bx^2+3bx+cx+3c\)

\(=ax^3+x^2\left(3a+b\right)+x\left(3b+c\right)+3c\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}3c=0\\3b+c=-3\\3a+b=2\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=0\\b=-1\\a=1\end{matrix}\right.\)

c: \(\left(x^2+cx+2\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+2a\cdot x+2b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\)

Theo đề, ta có: 2b=-2; bc+2a=0; b+ac=1; a=1

=>b=-1; a=1; c=2

d: \(\left(x^2+cx+1\right)\left(ax+b\right)\)

\(=a\cdot x^3+bx^2+ac\cdot x^2+bc\cdot x+a\cdot x+b\)

\(=a\cdot x^3+x^2\left(b+ac\right)+x\left(bc+a\right)+b\)

Theo đề, ta có:

b=2; bc+a=-3; b+ac=0; a=1

=>b=2; a=1; bc=-3-a=-3-1=-4

=>b=2; a=1; 2c=-4

=>b=2; a=1; c=-2