K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:

\(y_0=\left(2m+3\right)x_0-m+1\)

\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)

Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)

21 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+\left(2m-3\right)x+5-4m=2mx-4m+3\)

=>\(x^2+\left(2m-3\right)x+5-4m-2mx+4m-3=0\)

=>\(x^2+x\left(2m-3-2m\right)+5-4m+4m-3=0\)

=>\(x^2-3x+2=0\)

=>\(\left(x-1\right)\left(x-2\right)=0\)

=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Khi x=1 thì \(y=2m\cdot1-4m+3=2m-4m+3=-2m+3\)

Khi x=2 thì \(y=2m\cdot2-4m+3=3\)

Vậy: (dm) và (P) luôn cắt nhau tại điểm A(2;3) cố định

7 tháng 12 2016

Toán lớp 9.

28 tháng 1 2022

28 tháng 1 2022

undefined

undefined

NV
2 tháng 3 2023

a.

Phương trình hoành độ giao điểm:

\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)

\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)

\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)

\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)

b.

Pt hoành độ giao điểm:

\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)

\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)

Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)

\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)

\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)

\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)

\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)

\(=18-4\left(-m-2\right)+6m+2m^2\)

\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)

2 tháng 3 2023

Mình cảm ơn ạ

24 tháng 12 2022

Gọi điểm cố định mà đường thẳng :

(d) có phương trình y = (m2 + m) x - 2m2 - 2m đi qua  là điểm A ( x0;y0)

Vì điểm A thuộc đường thẳng (d) nên tọa độ điểm A thỏa mãn phương trình đường thẳng d.

Thay tọa độ điểm A vào phương trình đường thẳng (d) ta có :

(m2 + m) x0 - 2m2 - 2m =  y0

m2.x0 + mx0 - 2m2 - 2m = y0

(m2x0 - 2m2) + ( mx0 - 2m) = y0

m2(x0 - 2) + m(x0 - 2) = y0

(m2 + m)( x0 - 2) = y(1)

Pt(1) luôn đúng với \(\forall\) m \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0-2=0\\y_0=0\end{matrix}\right.\)

                                       \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0=2\\y_0=0\end{matrix}\right.\)

                                       \(\Rightarrow\) A( 2;0)

Kết luận : Vậy điểm cố định mà đường thẳng y =  (m2 +m) x - 2m2 - 2m đi qua là điểm A(2;0)

 

 

NV
21 tháng 6 2019

Phương trình hoành độ giao điểm:

\(x^4+mx^3-mx+3=x+1\)

\(\Leftrightarrow x^4-x+2+m\left(x^3-x\right)=0\)

Phương trình trên vô nghiệm khi:

\(\left\{{}\begin{matrix}x^3-x=0\\x^4-x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;1\right)\\M\left(1;2\right)\\M\left(-1;0\right)\end{matrix}\right.\)

8 tháng 12 2016

a/ Gọi điểm cố định đó là \(N\left(x_0;y_0\right)\) .

Vì (d) đi qua N nên : \(\left(m-2\right)x_0+\left(m-1\right)y_0-1=0\Leftrightarrow m\left(x_0+y_0\right)-\left(2x_0+y_0+1\right)=0\)

Để (d) luôn đi qua N với mọi m thì \(\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x_0=-1\\y_0=1\end{cases}\) . Vậy điểm cố định đó là N(-1;1)

 

 

8 tháng 12 2016

b/ Gọi \(A\left(\frac{1}{m-2};0\right)\)\(B\left(0;\frac{1}{m-1}\right)\) là hai điểm thuộc (d)

và A,B lần lượt nằm trên Ox và Oy

Khi đó \(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)

hay \(\frac{1}{h^2}=\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(m-2\right)^2}\)

Tới đây bạn tìm GTNN của \(\frac{1}{h^2}\) rồi suy ra GTLN của \(h\) nhé :)