Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử điểm cố định mà đường thẳng đi qua là \(M\left(x_0;y_0\right)\Rightarrow\) với mọi m ta có:
\(y_0=\left(2m+3\right)x_0-m+1\)
\(\Leftrightarrow m\left(2x_0-1\right)+3x_0-y_0+1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0-1=0\\3x_0-y_0+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{2}\\y_0=\dfrac{5}{2}\end{matrix}\right.\)
Vậy điểm cố định mà đường thẳng đi qua là \(M\left(\dfrac{1}{2};\dfrac{5}{2}\right)\)
Phương trình hoành độ giao điểm là:
\(x^2+\left(2m-3\right)x+5-4m=2mx-4m+3\)
=>\(x^2+\left(2m-3\right)x+5-4m-2mx+4m-3=0\)
=>\(x^2+x\left(2m-3-2m\right)+5-4m+4m-3=0\)
=>\(x^2-3x+2=0\)
=>\(\left(x-1\right)\left(x-2\right)=0\)
=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Khi x=1 thì \(y=2m\cdot1-4m+3=2m-4m+3=-2m+3\)
Khi x=2 thì \(y=2m\cdot2-4m+3=3\)
Vậy: (dm) và (P) luôn cắt nhau tại điểm A(2;3) cố định
a.
Phương trình hoành độ giao điểm:
\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)
\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)
\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)
\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)
b.
Pt hoành độ giao điểm:
\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)
\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)
Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)
\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)
\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)
\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)
\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)
\(=18-4\left(-m-2\right)+6m+2m^2\)
\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)
Gọi điểm cố định mà đường thẳng :
(d) có phương trình y = (m2 + m) x - 2m2 - 2m đi qua là điểm A ( x0;y0)
Vì điểm A thuộc đường thẳng (d) nên tọa độ điểm A thỏa mãn phương trình đường thẳng d.
Thay tọa độ điểm A vào phương trình đường thẳng (d) ta có :
(m2 + m) x0 - 2m2 - 2m = y0
m2.x0 + mx0 - 2m2 - 2m = y0
(m2x0 - 2m2) + ( mx0 - 2m) = y0
m2(x0 - 2) + m(x0 - 2) = y0
(m2 + m)( x0 - 2) = y0 (1)
Pt(1) luôn đúng với \(\forall\) m \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0-2=0\\y_0=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_0=2\\y_0=0\end{matrix}\right.\)
\(\Rightarrow\) A( 2;0)
Kết luận : Vậy điểm cố định mà đường thẳng y = (m2 +m) x - 2m2 - 2m đi qua là điểm A(2;0)
Phương trình hoành độ giao điểm:
\(x^4+mx^3-mx+3=x+1\)
\(\Leftrightarrow x^4-x+2+m\left(x^3-x\right)=0\)
Phương trình trên vô nghiệm khi:
\(\left\{{}\begin{matrix}x^3-x=0\\x^4-x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;1\right)\\M\left(1;2\right)\\M\left(-1;0\right)\end{matrix}\right.\)
a/ Gọi điểm cố định đó là \(N\left(x_0;y_0\right)\) .
Vì (d) đi qua N nên : \(\left(m-2\right)x_0+\left(m-1\right)y_0-1=0\Leftrightarrow m\left(x_0+y_0\right)-\left(2x_0+y_0+1\right)=0\)
Để (d) luôn đi qua N với mọi m thì \(\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x_0=-1\\y_0=1\end{cases}\) . Vậy điểm cố định đó là N(-1;1)
b/ Gọi \(A\left(\frac{1}{m-2};0\right)\) và \(B\left(0;\frac{1}{m-1}\right)\) là hai điểm thuộc (d)
và A,B lần lượt nằm trên Ox và Oy
Khi đó \(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
hay \(\frac{1}{h^2}=\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(m-2\right)^2}\)
Tới đây bạn tìm GTNN của \(\frac{1}{h^2}\) rồi suy ra GTLN của \(h\) nhé :)