Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng có
Đường thẳng cần tìm có và đi qua điểm M( -2; 3) nên có phương trình tham số là .
Chọn A.
Do 2 đường thẳng d và d’ vuông góc với nhau nên d có véc tơ chỉ phương
.
Mà d đi qua điểm M( -2; 3) nên d có phương trình tham số là:
Chọn B.
a) Thay x=-1 và y=4 vào (d), ta được:
\(3m\cdot\left(-1\right)+m-2=4\)
\(\Leftrightarrow-2m=6\)
hay m=-3
b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)
Đáp án A
Do 2 đường thẳng d và (d’) vuông góc với nhau nên VTCP của đường thẳng này là VTPT của đường thẳng kia và ngược lại.
Mà đường thẳng (d’) có VTPT là n → ( 1 ; 6 ) n ê n u → ( 1 ; 6 ) là VTCP của đường thẳng (d) .
Khi đó phương trình tham số của đường thẳng (d) cần tìm là:
a) Do MH vuông góc với đường thẳng \(\Delta \) nên ta có vecto chỉ phương của MH là: \(\overrightarrow u = \left( {2;1} \right)\)
b) Phương trình tham số của đường thẳng MH đi qua \(M\left( { - 1;1} \right)\) có vecto chỉ phương\(\overrightarrow u = \left( {2;1} \right)\) là: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 + t\end{array} \right. \Leftrightarrow x - 2y + 3 = 0\)
c) H là giao điểm của MH và đường thẳng \(\Delta \)
Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\2x + y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) . Vậy tọa độ điểm H là: \(H\left( {1;2} \right)\)
Độ dài đoạn thẳng MH là: \(MH = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
PTHĐGD là:
(2m-2)x+1-2m=1/2(1-m)x+3/2(1-m)
=>\(\Leftrightarrow x\left(2m-2-\dfrac{1}{2\left(1-m\right)}\right)=\dfrac{3}{2\left(1-m\right)}-1+2m\)
\(\Leftrightarrow x\cdot\left(\dfrac{4\left(m-1\right)\left(m-1\right)+1}{2\left(m-1\right)}\right)=\dfrac{3+2\left(1-m\right)\left(-1+2m\right)}{2\left(1-m\right)}\)
\(\Leftrightarrow x\cdot\dfrac{4m^2-8m+4+1}{2\left(m-1\right)}=\dfrac{3+\left(2-2m\right)\left(2m-1\right)}{2\left(1-m\right)}\)
\(\Leftrightarrow x=\dfrac{3-4m-2-4m^2+2m}{4m^2-8m+4}=\dfrac{-4m^2-2m+1}{4m^2-8m+4}\)
=>\(y=\left(2m-2\right)\cdot\dfrac{-4m^2-2m+1}{4\left(m-1\right)^2}+1-2m\)
\(=\dfrac{2\left(m-1\right)\left(-4m^2-2m+1\right)}{4\left(m-1\right)^2}+1-2m\)
\(=\dfrac{-4m^2-2m+1}{2\left(m-1\right)}+\left(-2m+1\right)\)
\(=\dfrac{-4m^2-2m+1+\left(-2m+1\right)\cdot\left(2m-2\right)}{2\left(m-1\right)}\)
\(=\dfrac{-4m^2-2m+1-4m^2+4m-2m+2}{2\left(m-1\right)}\)
\(=\dfrac{-8m^2+3}{2\left(m-1\right)}\)