\(\left(25u^2v-13uv^2+u^3\right)-M=11u^2v-2u^3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

a/M+(5x2-2xy)=6x2+9xy-y2

=>M =(6x2+9xy-y2)-(5x2-2xy)=6x2+9xy-y2-5x2+2xy

=6x2-5x2+9xy+2xy-y2=x2+11xy-y2

b/M-(4xy-3y2)=x2-7xy+8y2

=>M=(x2-7xy+8y2)+(4xy-3y2)

=x2-7xy+8y2+4xy-3y2

=8y2-3y2-7xy+4xy+x2=5y2-3xy+x2

26 tháng 5 2017

\(a,5xyz-12x^2yz^2-17xy^3-21x^2yz^2-6xyz+M=0\)

\(\Rightarrow-xyz-33x^2yz^2-17xy^3+M=0\)

\(\Rightarrow M=xyz+33x^2yz^2+17xy^3\)

Vậy...

b, \(M-\left(6x^4y^3-7xyz^3+9xyz\right)=4x^4y^3-3xyz^3-5xyz\)

\(\Rightarrow M=4x^4y^3-3xyz^3-5xyz+6x^4y^3-7xyz^3+9xyz\)

\(\Rightarrow M=10x^4y^3-10xyz^3+4xyz\)

Vậy...

26 tháng 5 2017

:v sao tl nhanh thế Nguyễn Huy Tú

1 tháng 6 2018

Bài 2: a) Bậc của đa thức P(x) là 4

b) Thay x=0 vào đa thức , ta đc

P(x)=02+ 2.0-3= -3

Vây x=0 thì P(x) đc kết quả là -3

Thay x=2 vào đa thức ta đc

P(x)= 22 + 2.2 -3= 5

( Chúc bạn học tốt)

1 tháng 6 2018
https://i.imgur.com/Eu8WTsP.jpg
18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

14 tháng 3 2018

\(A+B=0\Leftrightarrow\left(-2xy^3\right)^2+\left(3x^3y\right)^2=0\Leftrightarrow4x^2y^6+9x^6y^2=0\Leftrightarrow x^2y^2\left(4y^4+9x^4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\y=0\\\left(4y^4+9x^4\right)=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Câu 2:

a) Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Rightarrow x^4+3x^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(x^4+3x^2=0\Leftrightarrow x^2\left(x^2+3\right)=0\)

\(x^2\ge0\forall x\)

nên \(x^2+3\ge3>0\forall x\)

Do đó: \(x^2=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(A=x^4+3x^2+2\) là 2 khi x=0

b)\(B=\left(x^4+5\right)^2\)

Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+5\ge5\forall x\)

\(\Rightarrow\left(x^4+5\right)^2\ge25\forall x\)

Dấu '=' xảy ra khi

\(x^4+5=5\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy: GTNN của biểu thức \(B=\left(x^4+5\right)^2\) là 25 khi x=0

c) \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y+2\right)^2\ge0\forall y\)

Do đó: \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2-2\ge-2\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: GTNN của biểu thức \(C=\left(x-1\right)^2+\left(y+2\right)^2-2\) là -2 khi x=1 và y=-2

Câu 3:

a) \(A=5-3\left(2x-1\right)^2\)

Ta có: \(A=5-3\left(2x-1\right)^2=-3\left(2x-1\right)^2+5\)

Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi

\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\frac{1}{2}\)

b) \(B=\frac{1}{2\left(x-1\right)^2+3}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{1}{2\left(x-1\right)^2+3}\le\frac{1}{3}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: GTLN của biểu thức \(B=\frac{1}{2\left(x-1\right)^2+3}\)\(\frac{1}{3}\) khi x=1

c) \(C=\frac{x^2+8}{x^2+2}\)

Ta có: \(C=\frac{x^2+8}{x^2+2}=\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\forall x\)

\(\Rightarrow\frac{6}{x^2+2}\le3\forall x\)

\(\Rightarrow1+\frac{6}{x^2+2}\le4\forall x\)

Dấu '=' xảy ra khi

\(x^2=0\Leftrightarrow x=0\)

Vậy: Giá trị lớn nhất của biểu thức \(C=\frac{x^2+8}{x^2+2}\) là 4 khi x=0

18 tháng 10 2022

Bài 2: 

a: =>x-3<=0

=>x<=3

b: TH1: x>=-1/2

=>2x+1+x=4

=>3x+1=4

=>x=1(nhận)
TH2: x<-1/2

=>-2x-1+x=4

=>-x-1=4

=>-x=5

=>x=-5(nhận)

c: =>|x-3|+x-5=0

TH1: x>=3

Pt sẽ là x-3+x-5=0

=>2x-8=0

=>x=4(nhận)
TH2: x<3

Pt sẽ là 3-x+x-5=0

=>-2=0(loại)

Bài 3: 

a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

Bài 2: 

\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)

\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)

\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)