K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3

          =1-2+(-4)+(-8)

          =-9

b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)

          =x4-2x2+4x+8x3-6-8x3+3x2+4x

          =x4+x2+8x-6

25 tháng 3 2019

t là nốt câu c):

Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.

6 tháng 8 2015

=> 2 f(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9

               = 10x^4 - 6x^3 + 4x^2 + 8x - 14 

=> 2.f ( x ) =  2 ( 5x^4 - 3x^3 + 2x^2 + 4x - 7 )

=> ( fx) = 5x^4 - 3x^3 + 2x^2 + 4x - 7 

g(x) tự tìm 

6 tháng 8 2015

ta có:

f(x) + g(x) = 6x^4 - 3x^2 - 5 

 

f(x) - g(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9

công hai vế lại với nhau ta được:

f(x)+g(x)+f(x)-g(x)=6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9

=>2f(x)=6x4+4x4-6x3-3x2+7x2+8x-5-9

2f(x)=10x4-6x3+4x2+8x-14

2f(x)=2.(5x4-3x3+2x2+4x-7)

=>f(x)=5x4-3x3+2x2+4x-7

=>g(x)=6x^4 - 3x^2 - 5 -(5x4-3x3+2x2+4x-7)

=6x4-3x2-5-5x4+3x3-2x2-4x+7

=6x4-5x4+3x3-3x2-2x2-4x-5+7

=x4+3x3-5x2-4x+2

 

4:

a: f(x)=0

=>-x-4=0

=>x=-4

b: g(x)=0

=>x^2+x+4=0

Δ=1^2-4*1*4=1-16=-15<0

=>g(x) ko có nghiệm 

c: m(x)=0

=>2x-2=0

=>x=1

d: n(x)=0

=>7x+2=0

=>x=-2/7

NV
17 tháng 4 2022

\(f\left(x\right)=x^3-x+7\)

\(g\left(x\right)=-x^3+8x-14\)

\(\Rightarrow f\left(x\right)+g\left(x\right)=7x-7\)

Nghiệm của đa thức \(f\left(x\right)+g\left(x\right)=0\Rightarrow7x-7=0\)

\(\Rightarrow x=1\)

10 tháng 6 2020

\(g\left(x\right)=x^3+8x=x\left(x^2+8\right)\)

Để g(x) có nghiệm => \(x\left(x^2+8\right)\)=0

=> x=0 (vì x2+8 >0 với mọi x)

Vậy x=0 là nghiệm của đa thức

10 tháng 6 2020

g(x) = x3 + 8x 

g(x) = 0 <=> x3 + 8x = 0

             <=> x(x2 + 8) = 0

             <=> x = 0 hoặc x2 + 8 = 0

* x2 + 8 = 0 => x2 = -8 ( vô lí )

=> x = 0

Vậy nghiệm của g(x) là 0

20 tháng 7 2023

a) Sữa đề: \(x^2+2x-3=0\)

\(\Rightarrow x^2-x+3x-3=0\)

\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b) \(x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c) \(2x-8x^3=0\)

\(\Rightarrow2x\left(1-4x^2\right)=0\)

\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{3}-6x^2=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

20 tháng 7 2023

a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.