\(\frac{f\left(\sqrt{2}+\sqrt{7}\right)}{G\left(\sqrt{2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Đặt \(f\left(\sqrt{2}+\sqrt{7}\right)=a,g\left(\sqrt{2}+\sqrt{7}\right)=b\)

Theo định lý Bezout=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+a\)(1)

\(g\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).k\left(x\right)+b\)(2)

Theo bài ra: \(\frac{a}{b}=\sqrt{2}=>a=\sqrt{2}b\)

Từ (2)=>\(b=g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\)

Thay vào (1) ta được: \(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+\sqrt{2}.\left[g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\right]\)

=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).\left[h\left(x\right)-\sqrt{2}k\left(x\right)\right]+\sqrt{2}.g\left(x\right)\)

Xét x=1=> \(f\left(1\right)=\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]+\sqrt{2}.g\left(1\right)\)

Vì f(1) là số nguyên, \(\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]\)và \(\sqrt{2}g\left(x\right)\)là số hữu tỉ

=>Vô lí

Vậy ko có đa thức f(x) và g(x) thoả mãn phương trình

17 tháng 10 2017

:| I don't know

23 tháng 12 2019

Hello vị lài

13 tháng 8 2019

TL:

\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)

BT thỏa mãn \(\forall x\)

14 tháng 8 2019

a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)

Vậy biểu thức có nghĩa với mọi x

b) \(\sqrt{\frac{-3}{2+x}}\)

Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)

15 tháng 1 2018

bổ xung định lý thứ 5

f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)

3 tháng 9 2020

:V

Câu đầu cho x > 0 thì dễ hơn ...... 

Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)

Đẳng thức xảy ra tại x=1

\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1

Làm 2 cái thôi còn lại tương tự bạn nhé :) 

3 tháng 9 2020

+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)

       \(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)

   Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có: 

         \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)

         \(\Rightarrow\)\(D\ge3-2=1\)

   Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)

                                               \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)

                                               \(\Leftrightarrow\sqrt{x}+2=\pm3\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)

                                               \(\Leftrightarrow x=\pm1\)

 Vậy \(S=\left\{\pm1\right\}\)

2 tháng 4 2016

\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)

\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)

\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)

\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)

Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi

\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)

Vậy, \(a=-1;\text{ }b=1.\)

2 tháng 4 2016

f(x) chia hết cho g(x)

Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)

=> f( \(1-\sqrt{6}\)) =0

=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)

Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

24 tháng 5 2020

bạn làm dc k mà kêu mk

28 tháng 5 2020

mk là hsg toán mà. nhg con đó làm bth lắm