K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

ta có : \(y'=\left(x^3-6x^2+12x\right)=3x^2-12x+12\)

\(\Rightarrow y'=0\Leftrightarrow3x^2-12x+12\Leftrightarrow x=2\)

vậy cực trị của hàm số \(y=x^3-6x^2+12x\)\(2\)

25 tháng 9 2021

có 5 điểm cực trị

DD
8 tháng 10 2021

\(y=x^3-mx^2+\left(1-2m\right)x+1\)

\(y'=3x^2-2mx+1-2m\)

Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).

Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)

Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì: 

\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).

Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt. 

11 tháng 7 2016

ta có y'=3x^2-m

để hs có cực trị thì y'=0 có  nghiệm phân biệt <=>3x^2-m=0<=>x^2=m/3<=>m/3>0 =>m>0

vậy với m>0 thì hs có cực trị

 

17 tháng 12 2016

Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)

Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?

17 tháng 12 2016

đề bài chỉ vậy thôi

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)

Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)

Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)

Dựa vào $(1)$ và biến đổi đơn giản:

\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)

\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)

\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)

Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)

25 tháng 7 2018

Có thể xem hoàn chỉnh k ạ vì bị cắt