K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

Hàm số xác định và có đạo hàm với mọi x ≠ 1.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′=0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = 1 − 2 và đạt cực tiểu tại x = 1 +  2 , ta có:

y CD  = y(1 −  2 ) = −2 2

y CT  = y(1 +  2 ) = 2 2

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

16 tháng 10 2015

ta tính \(y'=\frac{x^2+1-2x^2}{\left(x^2+1\right)^2}=\frac{1-x^2}{\left(x^2+1\right)^2}\)

ta giải phương trình y'=0

suy x=1;x=-1

ta tính \(y''=\frac{-2x\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(1-x^2\right)}{\left(x^2+1\right)^4}=\frac{-2x\left(x^2+1\right)-4x\left(1-x^2\right)}{\left(1+x^2\right)^3}=\frac{2x^3-6x}{\left(1+x^2\right)^3}=\frac{-2x\left(x^2+2\right)}{\left(1+x^2\right)^3}\)

ta có \(y''\left(1\right)=-3<0\)hàm số đạt cực đại tại x=1

\(y''\left(-1\right)=3>0\)hàm số đạt cực tiểu tại x=-1

31 tháng 3 2017

Xét hàm số : y = x4 – 2x2 + 2

Có đạo hàm là: y’ = 4x3 – 4x = 0 ⇔ x = 0, x = 1, x = -1

Đạo hàm cấp hai: y’’ = 12x2 – 4

y’’(0) = -4 < 0 ⇒ điểm cực đại xCD =0

y’’(-1) = 8 > 0, y’’(-1) = 8 > 0

⇒ các điểm cực tiểu xCT = -1, xCT = 1


23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

23 tháng 4 2016

Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)

\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc 

               \(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)

a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0

\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)

b) Hàm số chỉ có cực tiểu mà không có cực đại 

\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)

21 tháng 10 2020

câu b m= -1 hàm số có 1 cực tiểu duy nhất