\(B=4a^2+4a-5\)

\(C=4y-y^2+3\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Mẫu câu đầu 

\(4x^2+4x-5=4x^2+4x+1-6\)

\(=4\left(x^2+x+\frac{1}{4}\right)-9\)

\(=4\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-6\)

\(=4\left(x+\frac{1}{2}\right)^2-6\ge-6\)

Vậy Min A=-6 dấu bằng xảy ra khi và chỉ khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

17 tháng 10 2022

a: \(=4a^2+4a+1-6=\left(2a+1\right)^2-6>=-6\)

Dấu = xảy ra khi a=-1/2

b: \(=-\left(y^2-4y-3\right)\)

\(=-\left(y^2-4y+4-7\right)\)

\(=-\left(y-2\right)^2+7< =7\)

Dấu = xảy ra khi y=2

c: \(=-25x^2+3x\)

\(=-25\left(x^2-\dfrac{3}{25}x\right)\)

\(=-25\left(x^2-2\cdot x\cdot\dfrac{3}{50}+\dfrac{9}{2500}-\dfrac{9}{2500}\right)\)

\(=-25\left(x-\dfrac{3}{50}\right)^2+\dfrac{9}{100}< =\dfrac{9}{100}\)

Dấu = xảy ra khi x=3/50

e: \(=3\left(x^2+\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}\right)\)

\(=3\left(x+\dfrac{7}{6}\right)^2-\dfrac{37}{12}>=-\dfrac{37}{12}\)

Dấu = xảy ra khi x=-7/6

2 tháng 8 2018

a) \(3x^2y-6xy^2\)

\(=3xy\left(x-2y\right)\)

b) \(25x^2-y^2\)

\(=\left(5x\right)^2-y^2\)

\(=\left(5x-y\right)\left(5x+y\right)\)

c) \(4a^2-4a+1\)

\(=\left(2a\right)^2-2.2a+1\)

\(=\left(2a-1\right)^2\)

d) \(125-a^3\)

\(=5^3-a^3\)

\(=\left(5-a\right)\left(25+5a+a^2\right)\)

e) \(7\left(a+b\right)-14\left(a+b\right)\)

\(=7\left(a+b\right)\left(1-2\right)\)

\(=-7\left(a+b\right)\)

f) \(13\left(x-y\right)+36a\left(y-x\right)\)

\(=13\left(x-y\right)-36a\left(x-y\right)\)

\(=\left(x-y\right)\left(13-36a\right)\)

g) \(3x-3y+7xy-7x^2\)

\(=3\left(x-y\right)+7x\left(y-x\right)\)

\(=3\left(x-y\right)-7x\left(x-y\right)\)

\(=\left(x-y\right)\left(3-7x\right)\)

h) \(5x^2+5y^2-20z^2-10xy\)

\(=5\left(x^2+y^2-4z^2-2xy\right)\)

\(=5\left[\left(x^2-2xy+y^2\right)-\left(2z\right)^2\right]\)

\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

24 tháng 8 2020

Bài 1:

a) \(M=x^2-3x+10=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)

KL:...

24 tháng 8 2020

2. a. \(A=12a-4a^2+3=-4\left(a-\frac{3}{2}\right)^2+12\)

Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-4\left(a-\frac{3}{2}\right)^2+3\le3\)

Dấu "=" xảy ra \(\Leftrightarrow-4\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)

Vậy Amax = 3 <=> a = 3/2

b. \(B=4t-8v-v^2-t^2+2017=-\left(v^2+t^2-4t+8v+20\right)+2037\)

\(=-\left(t-2\right)^2-\left(v+4\right)^2+2037\)

Vì \(\left(t-2\right)^2\ge0;\left(v+4\right)^2\ge0\forall t;v\)

\(\Rightarrow-\left(t-2\right)^2-\left(v+4\right)^2+2037\le2037\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(t-2\right)^2=0\\\left(v+4\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t-2=0\\v+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\v=-4\end{cases}}\)

Vậy Bmax = 2037 <=> t = 2 ; v = - 4

c. \(C=m-\frac{m^2}{4}=-\frac{1}{4}\left(m-2\right)^2+1\)

Vì \(\left(m-2\right)^2\ge0\forall m\)\(\Rightarrow-\frac{1}{4}\left(m-2\right)^2+1\le1\)

Dấu "=" xảy ra \(\Leftrightarrow-\frac{1}{4}\left(m-2\right)^2=0\Leftrightarrow m-2=0\Leftrightarrow m=2\)

Vậy Cmax = 1 <=> m = 2

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@