Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cảm ơn cô Nguyễn Linh Chi rất nhiều
Em sẽ tự tin lên trong kì thi sắp tới này
Bài 2 : a,Gọi d là ƯCLN\((6n+5,3n+2)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}6n+5⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+5⋮d\\2\left[(3n+2)\right]⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\6n+4⋮d\end{cases}}\Rightarrow(6n+5)-(6n+4)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\left\{\pm1\right\}\)
Mà \(d\inℕ^∗\Rightarrow d=1\)
Vậy P là phân số tối giản
* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 :
Cho phân số : \(\frac{a}{b}\) \(\left(a,b\inℕ^∗\right)\)
\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)
Do đó :
\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh )
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được :
\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)
Cộng theo vế ba đẳng thức trên ta có :
\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)
\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
\(\Leftrightarrow\)\(S\ge6\)
Vậy \(S\ge6\)
\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)
Chúc bạn học tốt ~
Lời giải nè: (lưu ý là bcd ; abc và abcabc có gạch ngang trên đầu để thể hiện số tự nhiên)
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
12 nha bạn sao thế nhì trả lời nãy giờ ko hiện
12 nha bạn ơi olm duyệt cho em đi mà em xi olm