Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2020}\)
\(S=2\left(1+3+3^2+...+3^{2020}\right)\)
Đặt \(A=1+3+3^2+...+3^{2020}\)
\(\Rightarrow3A=3\left(1+3+3^2+...+3^{2020}\right)\)
\(3A=3+3^2+3^3+...+3^{2021}\)
\(2A=3A-A\)
\(2A=3+3^2+3^3+...+3^{2021}-\left(1+3+3^2+3^3+...+3^{2020}\right)\)
\(2A=3+3^2+3^3+...+3^{2021}-1-3-3^2-3^3-...-3^{2020}\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\frac{3^{2021}-1}{2}\)
Thế vào S ta được :
\(S=2\cdot\frac{3^{2021}-1}{2}=3^{2021}-1\)
Đến đây em chịu xD Nhờ các cao nhân giải tiếp ạ ;-;
Giải tiếp phần của bạn Quỳnh nhé!
Xét dãy chữ số tận cùng của \(3^{2021}\) : \(3;9;7;1;3;9;7;1;...\)
Cứ 4 số thành một nhóm và lập lại như vậy. Có \(2021\div4=505\) ( dư 1 )
Vì dư 1 nên số thứ nhất trong nhóm dãy chữ số tận cùng là số tận cùng của S + 1.
Vậy chữ số tận cùng của S là 3 - 1 = 2.
1.
a)8102-2102
= 82 .8100 - 22. 2100
=64.(84)25-4.(24)25
=64 . ...625 - 4 . ...625
=....4 - ...4
.=...0 chia hết cho 10
b)34n+1+2
=(34)n+1 + 2
= ....1 + 2
=....3 chia hết cho 3
2.
a)C = 2.1+2.3+...+2.32004
C = 2.(1+3+...+32004)
đặt D=1+3+..+32004
3D=3+ .....+32005
3D - D=32005 - 3
2D=32005-1
2D= (34)501.3 - 1
2D = 81501 .3 - 1
D= (...1 . 3- 1):2
D = (...3 - 1) :2
D= ...2 : 2
D=....1
b)B= 1+ 3+...+3300
3B= 3+...+3101
2D = 3101 - 1
D= (3101 - 1):2
D=(3100.3-1):2
D=[(34)25. 3 -1]:2
D= [...125.3-1]:2
D= [...3-1]:2
D=...2:2
D=....1
a,Ta xét chữ số tận cùng của 7^1999=(7^4)^499.7^3
7^1999=2401^499.343
=> Chữ số tận cùng của 7^1999=1.3(Vì chữ số tận cùng của 2401^499 là 1 và chữ số tận cùng của 343 là 3)
=>Chữ số tận cùng của 7^1999 là 3
Vậy chữ số tận cùng của 57^1999 là 3.
b,Ta xét chữ số tận cùng của 3^1999=(3^4)^499.27
3^1999=81^499.27
=>Chữ số tận cùng của 3^1999=1.7(Vì chữ số tận cùng của 81^499 là 1 và chữ số tận cùng của 27 là 7)
=> Chữ số tận cùng của 3^1999 là 7
Vậy chữ số tận cùng của 93^1999 là 7.
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
\(A=3^{42}+2^{42}+3^{40}+2^{40}\)
\(A=3^{4\cdot10+2}+2^{4\cdot10+2}+3^{4\cdot10}+2^{4\cdot10}\)
\(A=3^{4\cdot10}\cdot3^2+2^{4\cdot10}.2^2+\left(...1\right)+\left(...6\right)\)
\(A=\left(...1\right)\cdot9+\left(...6\right)\cdot4+\left(...7\right)\)
\(A=\left(...9\right)+\left(...4\right)+\left(...7\right)\)
\(A=\left(...0\right)\)
Vậy A có chữ số tận cùng là 0
giúp mình với ạ, mình đag cần gấp, ai đúng mình tích. giải rõ ràng nha
A=B5 + C6
A=C1
Mình chỉ giải được vậy thôi!