Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta xét chữ số tận cùng của 7^1999=(7^4)^499.7^3
7^1999=2401^499.343
=> Chữ số tận cùng của 7^1999=1.3(Vì chữ số tận cùng của 2401^499 là 1 và chữ số tận cùng của 343 là 3)
=>Chữ số tận cùng của 7^1999 là 3
Vậy chữ số tận cùng của 57^1999 là 3.
b,Ta xét chữ số tận cùng của 3^1999=(3^4)^499.27
3^1999=81^499.27
=>Chữ số tận cùng của 3^1999=1.7(Vì chữ số tận cùng của 81^499 là 1 và chữ số tận cùng của 27 là 7)
=> Chữ số tận cùng của 3^1999 là 7
Vậy chữ số tận cùng của 93^1999 là 7.
+ \(2^{31}\cdot5=2^{30}\cdot2\cdot5\)
\(=2^{30}\cdot10\)tận cùng bằng chữ số 0.
+ Tương tự \(2^{2018}\cdot5^2\)tận cùng bằng chữ số 0
+ Các số có tận cùng là 0 , 1 , 5 , 6 nâng lên lũy thừa bậc mấy cũng tận cùng là 0 , 1 , 5 , 6.
\(2^{2018}=2^{2016}\cdot4\)\(=\left(2^4\right)^{504}\cdot4\)
\(=16^{504}\cdot4\)\(=\left(...6\right)\cdot4=\left(...4\right)\)( \(16^{504}\)tận cùng là 6 )
Vậy \(2^{2018}\)tận cùng là 4
a,2
b,0
c,6
Giải thích giúp mình với