Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F G H
giả sử a=2 -> GC=1
AB=AC=\(\sqrt{2}\)
Đặt DE=x FE=x/2
Theo Talet trong tam giác AGC có
\(\dfrac{FE}{GC}=\dfrac{AE}{AC}\) có AC=\(\sqrt{2}\) FE= x/2 GC=1
suy ra AE=\(\dfrac{x\sqrt{2}}{2}\) suy ra EC= \(\sqrt{2}-\dfrac{x\sqrt{2}}{2}\)
Tính được HC = GC-GH=1-x/2
Trong tam giác EHC theo pytago có :
EH2=EC2-HC2 suy ra EH2=(2-2x+x2/2)-(1-x+x2/4)
EH^2= x^2/4-x+1=(x/2-1)^2
suy ra EH=(1-x/2) (do x< 2 khi phá dấu trị tuyệt đối lấy dấu trừ)
Vậy diện tích xq hình trụ cần tìm là 2pi nhân EH nhân DE/2
vậy để diện tích xq hình trụ min cũng có nghĩa là EH nhân DE/2 min hay (1-x/2) nhân x/2 min
-> TÌm GTNN của S=x/2-x^2/4
dễ thấy giá trị của x cần tìm là 1
Vậy với x =1 thì diện tích xq hình trụ min và khi đó diện tích hcn là 1 x (1-1/2)=1/2
Do ta giả sử a=2 nên giá trị cần tìm là a^2/8 (với a=2 thì a^2/8 = 1/2)
Do ABC vuông cân nên EHC cũng vuông cân, vậy thu gọn bớt rồi
\(\dfrac{\left|z-i\right|}{\left|z+i\right|}\Leftrightarrow\left|z-i\right|=\left|z+i\right|\Leftrightarrow\left|x+yi-i\right|=\left|x+yi+i\right|\)\(\Leftrightarrow\left(\left|x^2+\left(y+1\right)^2\right|\right)^2=\left(\left|x^2+\left(y-1\right)^2\right|\right)^2\)
\(\Leftrightarrow x^2+y^2-2y+1=x^2+y^2+2y+1\)
\(\Rightarrow y=0\)
Vậy là trục 0x
Đ/án : D
\(y'=2016x^{2015}.\left(x^2+1\right)^{2017}+2017\left(x^2+1\right)^{2016}.2x.x^{2016}\)
\(y'=x^{2015}\left(x^2+1\right)^{2016}\left(2016\left(x^2+1\right)+2017.2x^2\right)\)
\(y'=x^{2015}\left(x^2+1\right)^{2016}\left(2016x^2+2016+2017.2x^2\right)\)
\(y'=0\Rightarrow x=0\)
Hàm số có 1 cực trị duy nhất
Câu 1:
\(\left(x+2\right)f\left(x\right)+x\left(x+1\right)f'\left(x\right)=x\left(x+1\right)\)
\(\Leftrightarrow x\left(x+2\right)f\left(x\right)+x^2\left(x+1\right)f'\left(x\right)=x^2\left(x+1\right)\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{\left(x+1\right)^2}f\left(x\right)+\frac{x^2}{x+1}f'\left(x\right)=\frac{x^2}{x+1}\)
\(\Leftrightarrow\left(\frac{x^2}{x+1}f\left(x\right)\right)'=\frac{x^2}{x+1}=x-1+\frac{1}{x+1}\)
Lấy nguyên hàm 2 vế:
\(\Leftrightarrow\frac{x^2}{x+1}.f\left(x\right)=\frac{x^2}{2}-x+ln\left|x+1\right|+C\)
Thay \(x=1\Rightarrow ln2+\frac{1}{2}=\frac{1}{2}-1+ln2+C\Rightarrow C=1\)
\(\Rightarrow\frac{x^2}{x+1}f\left(x\right)=\frac{x^2}{2}-x+ln\left|x+1\right|+1\)
Thay \(x=2\Rightarrow\frac{4}{3}f\left(2\right)=ln3+1\Rightarrow f\left(2\right)=\frac{3}{4}ln+\frac{3}{4}\Rightarrow T=-\frac{3}{16}\)
Câu 2:
\(I_1=\int\limits^2_0f\left(x\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I_1=x.f\left(x\right)|^2_0-\int\limits^2_0x.f'\left(x\right)dx=2-\int\limits^2_0x.f'\left(x\right)dx\)
Mà \(I_1=2\)\(\Rightarrow I_2=\int\limits^2_0x.f'\left(x\right)dx=-2\)
Đặt \(2x=t\Rightarrow x=\frac{t}{2}\Rightarrow dx=\frac{1}{2}dt\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I_2=\int\limits^4_0\frac{t}{2}f'\left(\frac{t}{2}\right).\frac{1}{2}dt=\frac{1}{4}\int\limits^4_0t.f'\left(\frac{t}{2}\right)dt=-2\)
\(\Rightarrow\int\limits^4_0t.f'\left(\frac{t}{2}\right)dt=-8\) hay \(\int\limits^4_0x.f'\left(\frac{x}{2}\right)dx=-8\)
Lời giải:
Ta có:
$2023\equiv 3\pmod {10}$
$\Rightarrow 2023^{2024}\equiv 3^{2024}\pmod {10}$
Mà:
$3^4\equiv 1\pmod {10}$\
$\Rightarrow 3^{2024}=(3^4)^{506}\equiv 1^{506}\equiv 1\pmod {10}$
$\Rightarrow 2023^{2024}\equiv 3^{2024}\equiv 1\pmod {10}$
Vậy chữ số tận cùng là 1.