Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+3+94=100
ko đúng thì thôi,đừng chửi mk nha(nếu đúng thì k nha^_^)
A = 20 + 21 + 22 + ... + 22005
2A = 21 + 22 + 23 + ... + 22006
2A - A = (21 + 22 + 23 + ... + 22006) - (20 + 21 + 22 + ... + 22005)
A = 22006 - 20
A = 22006 - 1
A = 22004.22 - 1
A = (24)501.4 - 1
A = (...6)501.4 - 1
A = (...6).4 - 1
A = (...4) - 1
A = (...3)
\(A=2^0+2^1+2^2+...+2^{2005}\)
=>\(2A=2+2^2+2^3+...+2^{2006}\)
=>\(2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(2^0+2+2^2+...+2^{2005}\right)\)
=>\(A=2^{2006}-1\)
A=22006-1=(22)1003-1=41003-1=...4-1=...3 (chỗ này lưu ý: 4 mũ lẻ thì có tận cùng là 4)
Vậy A có tận cùng là 3
cái chỗ A = 2^2006 -a thì sửa thành A = 2^2006 -1 nhé ! .... mk gõ nhầm
Trong tích A có chứa 8.5 = 40 tận cùng là chữ số 0
=>A = 40 . (82....820.52...5100) = (...0) => A tận cùng là chữ số 0
*) Có thể đề này hỏi A tận cùng là bao nhiêu chữ số 0
A = 23 . 26 ... 260 . 51 . 52 ... 5100
= (23 . 5100) . (26 . 52) ... (260 . 5100)
Do 5n luôn có tận cùng là 5 ; 2m luôn là số chẵn nên 2m . 5n có tận cùng là 0
Vậy A bằng tích các số có tận cùng là 0 nên có tận cùng là 0
1+2+...+2017=2035153
Do đó ta đi tìm 2 chữ số tận cùng của \(53^2\)
\(53^2\)=2809 \(\Rightarrow\)2 chữ số cần tìm là 09
A = 1 + 2 + 22
+ ........ + 22016
2A = 2 + 22
+ ........ + 22017
2A - A = 22017
- 1
A = 22017
- 1
Ta có: 22017
- 1 = 24.504
.2 - 1 = (......6) . 2 - 1 = (.....2) - 1 =(....1)
Ta có
2100 = (220)5 = 765 (mod 100) đồng dư 76 (mod 100)
=>2100 có hai chữ số tận cùng là 76.
Cách 1: Ta chỉ cần xét chữ số tận cùng của nhóm \(\overline{...1}^2+\overline{...2}^2+\overline{...3}^2+...+\overline{...0}^2\):
\(\overline{...1}+\overline{...4}+\overline{...9}+\overline{...6}+\overline{...5}+\overline{...6}+\overline{...9}+\overline{...4}+\overline{...1}+\overline{...0}=\overline{...5}\)
Có 10 nhóm như vậy nên tận cùng tổng trên là chữ số 0.
Cách 2: Ta có công thức tổng quát : \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
nên tổng trên bằng \(\frac{100.101.201}{6}=338350\) có tận cùng là chữ số 0.
\(A=1^2+2^2+3^2+...+100^2\)
\(A=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+100\left(101-1\right)\)
\(A=1.2-1+2.3-2+3.4-3+...+100.101-100\)
\(A=\left(1.2+2.3+3.4+...+100.101\right)-\left(1+2+3+...+100\right)\)
\(A=\frac{100.101.102}{3}-\frac{100.101}{2}\)
A=100.101.34-50.101
A=343400-5050
A=338350
Vậy A có tận cùng là )