K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CR
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NL
0
M
5
CP
2
26 tháng 9 2020
A=\(1+3+3^2+3^3+...+3^{119}\)
3A=\(3+3^{^2}+3^3+3^4+...+3^{120}\)
3A-A=( \(3+3^{^2}+3^3+3^4+...+3^{120}\))-(\(1+3+3^2+3^3+...+3^{119}\))
2A=\(3^{120}-1\)
A=\(\frac{3^{120}-1}{2}\)
TA CÓ: \(3^{120}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 => \(\frac{....1-1}{2}\)= \(\frac{...0}{2}=0\)
VẬY, CHŨ SỐ TẬN CÙNG CỦA A LÀ 0
ND
0
\(A=1+3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{2015}\)
\(\Rightarrow2A=3^{2015}-1\)
Lại có \(3^{2015}-1=3^{2012}\cdot3^3-1=\left(3^4\right)^{503}\cdot27-1=81^{503}\cdot27-1=\left(...1\right)\cdot27-1=\left(...7\right)-1=\left(...6\right)\)
\(\Rightarrow A=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A có chữ số tận cùng là 3