\(3^{n+2}-2^{n+2}+3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

\(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vì A chia hết cho 10 nên A có chữ số tận cùng là 0

20 tháng 1 2018

Ta có \(^{3^{n+2}}\)\(^{2^{n+2}}\)\(^{3^n}\)\(^{2^n}\)

        =( \(^{3^{n+2}}\)\(^{3^n}\)) - ( \(^{2^{n+2}}\) + \(^{2^n}\))

       = (\(^{3^n}\)\(^{3^2}\)+ 1 ) ) - ( \(^{2^n}\)(\(2^2\)+1 ) )

       = ( 3^n * 10 ) - ( 2^n * 5 ) = ( 3^n * 10 ) - ( \(^{2^{n-1}}\)* 2 * 5 )

       = ( 3^n * 10 ) - ( \(^{2^{n-1}}\)* 10 )

Vì 3^n *10 chia hết cho 10 và \(^{2^{n-1}}\)* 10 chia hết cho 10

=> A chia hết cho 10 => A có chữ số tận cùng là 0

11 tháng 12 2016

3n.2.5-2n.5=5.(3n.2-2n)=5.(2.(3n-(2(n-1))=10.(3n-(2n-1)

10.(3n-(2n-1) nên chữ số tận cùng là số 0 ( mình ko bít cách viết mũ Sorry)

11 tháng 12 2016

bạn bấm vào fx là có thể viết số mũ

hay bạn bấm vào shilf +6 là ra ^ ( ^ là số mũ)

9 tháng 5 2019

\(1,\)\(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

Vậy chữ số tận cùng của A là chữ số 0

9 tháng 5 2019

\(2,\)\(\frac{x+3}{x-2}\)

\(=\frac{x-2+5}{x-2}\)

\(=\frac{x-2}{x-2}+\frac{5}{x-2}\)

\(=1+\frac{5}{x-2}\)

\(\Rightarrow\)Để \(1+\frac{5}{x-2}\in Z\Rightarrow\frac{5}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

Chia ra 4 trường hợp rồi tự tìm ra x nha

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:
a)

Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )

\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)

\(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với

\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)

Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)

\(\Rightarrow x=y+1=9\)

PT có nghiệm \((x,y)=(9,8)\)

b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)

Không mất tính tổng quát giả sử \(x> y\).

PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)

\(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)

\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)

Do đó PT vô nghiệm.

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Câu c)

\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Câu d)

Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)

Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn

\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.

6 tháng 4 2018

Ta có: \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

=> \(3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

=> \(3^n.10-2^n.5\)

=> \(3^n.10-2^{n-1}.10\)

=> \(10.\left(3^n-2^{n-1}\right)\)

Mà 10 ⋮ 10 => \(3^n-2^{n-1}\) ⋮ 10

=>\(3^{n+2}-2^{n+2}+3^n-2^n\) ⋮ 10

sai sót thì thông cảm nha

nếu đúng thì tick nhé

thanks

27 tháng 11 2018

Mai Anh ơi đề bạn là tìm x với điều kiện ra sao phải rõ ràng chứ như vầy ai làm được banhqua

1 tháng 3 2017

Ta có : 3n + 2 - 2n + 2 + 3n - 2n 

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n(32 + 1) - 2n - 1(23 + 2)

= 3n.10 - 2n - 1.10

= 10.(3n - 2n - 1)

Mà 3n - 2n - 1 thuộc Z

Nên 10.(3n - 2n - 1) chia hết cho 10

Vậy  3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10

29 tháng 8 2016

a)

Ta có

\(4^{21}=\left(4^4\right)^5.4=\left(\overline{...6}\right)^5.4=\left(\overline{...6}\right).4=\left(\overline{....4}\right)\)

=> 4^21 có tận cùng là 4

b)

Ta có

\(9^{53}=\left(9^4\right)^{13}.9=\left(\overline{.....1}\right)^{13}.9=\left(\overline{.....1}\right).9=\left(\overline{....9}\right)\)

=> 9^93 có tận cùng là 9

c)

\(3^{103}=\left(3^4\right)^{25}.3^3=\left(\overline{.....1}\right)^{25}.27=\left(\overline{.....1}\right).27=\left(\overline{....7}\right)\)

=> 3^103 có tận cùng là 7

d)

\(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{....6}\right)^n.8=\left(\overline{......6}\right).8=\left(\overline{.....8}\right)\)

=> 8^4n+1 có tận cùng là 8

29 tháng 8 2016

\(4^{21}=\left(...4\right)\)

Do: các số có tận cùng là 4 thì khi nâng lũy thừa bậc lẻ thì số tận cùng giữ nguyên.

\(9^{53}=...9\)

Do: các số có tận cùng là 9 thì khi nâng lũy thừa bậc 4n thì số tận cùng giữ nguyên.

\(3^{301}=3.3^{300}=3.\left(...1\right)=....3\)

Do: các số có tận cùng là 3 thì khi nâng lũy thừa bậc lẻ thì số tận cùng là 1.

\(8^{4n+1}=8.8^{4n}=8.\left(...6\right)=...8\)

Do: các số có tận cùng là 8 thì khi nâng lũy thừa bậc 4n thì số tận cùng là 6.