K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

9999 = 9924 . 4 + 3 = ( 994)24 . 993 = (...1)24 = (...1) . 993 = (...1) . (...9) = (...9)

Vậy chữ số tận cùng của 9999 là 9.

HT~

8 tháng 11 2015

Ta có:

\(3^{9999}=\left(3^{20}\right)^{499}.3^{19}=\left(...01\right)^{499}.\left(...67\right)=\left(...01\right).\left(...67\right)=\left(...67\right)\)

14 tháng 10 2015

=1 vì cs tận cùng của cơ sở =1

8 tháng 8 2015

Có \(2^{3^{9000}}=2^{3^2.\left(3^2\right)^{4499}}=\left(2^{3^2}\right)^{9^{4499}}=512^{9^{4499}}\)

=> A = \(\left(512.47\right)^{9^{4499}}+1001^{20000}=24064^{9^{4499}}+1001^{20000}\)

Ta có: \(24064^{9^{4499}}\) đồng dư với \(64^{9^{4499}}\) ( mod 1000)

+) xét: 9 đồng dư với 1 (mod 20) => 94499 = (92)2249 .9 đồng dư với 1.9 = 9 ( mod 20)

=> 94499 = 20k + 9 

=> \(64^{9^{4499}}=\left(2^6\right)^{20k+9}=\left(2^{20}\right)^{6k}.2^{6.9}=\left(2^{20}\right)^{6k+2}.2^{14}\)

Mà 220 đồng dư với 576 (mod 1000) nên \(64^{9^{4499}}=\left(2^{20}\right)^{6k+2}.2^{14}\) đồng dư với 576.16384 = 9 437 184 (mod 1000)

=> \(64^{9^{4499}}\) đồng dư với 184 mod 1000

=> \(24064^{9^{4499}}\) đồng dư với 184 (mod 1000)

+) ta có: 100120 000 đồng dư với 120 000 = 1 (mod 1000)

=> A  đồng dư với 184 + 1 = 185 (mod 1000)

Vậy 3 chữ số tận cùng của A là 185

20 tháng 10 2016

chu so cuoi cung la=5

31 tháng 12 2016

Chữ số tận cùng = 5 nha!

18 tháng 10 2016

Chữ số tận cùng của lũy thừa 20152017 là 5

Vì 5. vs bao nhiêu số luỹ thừa  thì cx bằng 5

2 tháng 9 2018

bạn ra đề khó quá