Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:
\(5^3=125\)
\(5^5=3125\)
\(5^7=78125\)
....
\(5^{2n+1}=\left(...125\right)\)
\(\Rightarrow5^{2017}=5^{1008.2+1}=\left(...125\right)\)
\(A=\left(1+2+3+...+2016+2017\right)^2\)
\(\Rightarrow A=\left\{\frac{\left(2017+1\right)\left[\left(2017-1\right):1+1\right]}{2}\right\}^2\)
\(\Rightarrow A=\left(\frac{2018.2017}{2}\right)^2=2035153^2\)
=>A = (............59). Vậy 2 chữ số tận cùng của A là 59
\(2017^{2016}\)
\(=\left(2017^4\right)^{504}\)
\(=\left(....1\right)^{504}\)
Mà số có tận cùng = 1 mũ bao nhiêu cũng sẽ có tận cùng bằng 1
=> Chữ số tận cùng là : 1
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp
a) Số có tận cùng là 9 khi gấp các số mũ lên có thể có các chữ số tận cùng là: 9;1 => chỉ có thể là 2 chữ số tận cùng
Ta lấy 200:2 =100=> số này chia hết cho 2 => Chữ số tận cùng của 1979^200 là 1.
b) Các chữ số tận cùng có thể có số có mũ có tận cùng là 7 là: 7;9;3;1
Ta lấy 2007 : 4 dư 3
Vậy số tận cùng là 3
c) Số tận cùng là 6