Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 12015+22015+....+20142014+20152015
=>12015+22015+.....+20142015+20152015-2014
(1+2+3+4+....+2014+2015)2015-2014
=20311202015-2014 mà 20311202015 có tận cùng bằng 0 mà
20311202015-2014=......6
suy ra tổng đó có tận cùng là 6
Ta có : 1 + 5 + 52 + ... + 52010 = 1 + \(\overline{....5}\) = \(\overline{.....6}\)
Chữ số tận cùng của A = 6 .
A = 1 + 5 + 52 + 53 + ... + 52010
=> 5A = 5 + 52 + 53 + ... + 52011
=> 5A - A = ( 5 + 52 + 53 + ... + 52011 ) - ( 1 + 5 + 52 + 53 + ... + 52010 )
=> 4A = 52011 - 1
=> \(A=\frac{5^{2011}-1}{4}\)
=> Chữ số tận cùng của A là 6
S = 2 + 22 + 23 + 24 + .......+ 22015(1)
2S=22+23+25+....+22016(2)
Lấy (2)-(1)
2S-S=(22+23+25+....+22016)-(2 + 22 + 23 + 24 + .......+ 22015)
S=22016-2
=(24)504-2
=16504-2
=....6-2
=....4
Vậy chữ số tận cùng của S là 4
S = 2 + 22 + 23 + 24 + .......+ 22015
2S = 22+23+24+25+...+22015+22016
Lấy 2S -S ta có
2S - S = ( 22+23+24+25+...+22015+22016 ) - ( 2 + 22 + 23 + 24 + .......+ 22015)
S = 22016 - 2
Ta có 22016 = (24)504
= 16504
= (...6)
=> S = (...6) - 2
=> S = (...4)
Vậy số tận cùng của tổng trên là 4
1) số tận cùng là 2
2) số tận cùng là 2
3) số trận cùng là 4