K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

2007^2008

Vì 2008=2.1004

2007^2008=2007^2.1004=(2007^2)^1004

                                         =........9^1004

                                         =........1(vì 1004 là số chẵn)

28 tháng 10 2015

Nhận thấy 2008 = 4k

Nên : 20072008 = 24k = (24)k = ...6k

Vì ...6k có tận cùng bằng 6 nên 20072008 có tận cùng là 6

28 tháng 10 2015

Nhận thấy 2008 = 4k

Nên 13582008 = 13584k = (13584)k = ...6k

Vì ...6k có tận cùng là 6 nên 13582008 có tận cùng là 6

4 tháng 10 2019

\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=16^{604}\cdot4=\overline{.....6}\cdot4=\overline{....4}\)

\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=81^{504}\cdot9=\overline{.....1}\cdot9=\overline{....9}\)

\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot\overline{.....7}=\overline{.....1}\cdot\overline{....7}=\overline{.....7}\)

\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{....6}\cdot8=\overline{......8}\)

\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{.....1}\cdot9=\overline{.....9}\)

4 tháng 10 2019

                                                    Bài giải

Ta có :

\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=\overline{\left(...6\right)}^{504}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy ...

\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=\overline{\left(...1\right)}^{504}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy ...

\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot7^3=\overline{\left(...1\right)}^{504}\cdot343=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy ...

\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{\left(...6\right)}^{505}\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)

Vậy ...

\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{\left(...1\right)}^{1011}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy ...