Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 TH xảy ra:
- Nếu n = 2k => 9n + 1 = 92k + 1 = (...1) + 1 = (...2)
Vì (...2) ko chia hết cho 10 => (...2) ko chia hết cho 100 => 9n + 1 ko chia hết cho 100
- Nếu n = 2k + 1 => 9n + 1 = 92k+1 + 1 = (...9) + 1 = (...0) (đến đoạn này thì mình tịt cứng rồi, ko biết làm nữa ^^ , tự suy nghĩ tiếp nhé!)
Cho A= 1944^2005
a) tìm dư khi chia A cho 7
b) tìm chữ số tận cùng của A
c) tìm 2 chữ số tận cùng của A
\(\dfrac{3^{2023}-1}{2}\) = \(\dfrac{\overline{...7}-1}{2}\) = \(\dfrac{\overline{...6}}{2}\) = \(\left[{}\begin{matrix}\overline{...3}\\\overline{...8}\end{matrix}\right.\)
Vậy \(\dfrac{3^{2023}-1}{2}\) \(\in\) { \(\overline{...3}\) ; \(\overline{...8}\) }
2^10 = 1024 => 2^10 đồng dư 24 modun 100
=> 2^50 đồng dư 24^5 theo modun 100
mà 24^5 =7962624 đồng dư 24 theo modun 100
=> 2^50 đồng dư 24 modun 100
=> 2^100 đồng dư 24^2 =576 đồng dư 76 modun 100
vậy 2 chữ số tận cùng của 2^100 là 76 :-)
mọi người ko trả lời được à