Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có tận cùng là 9 nếu nâng lên lũy thừa bậc chẵn thì có tận cùng là 1
\(\Rightarrow\)A=\(2019^{200}\)có tận cùng là 1
Bất cứ số tự nhiên nào nếu nâng lên lũy thừa là 4n+1 thì có tận cùng là chính nó
\(\Rightarrow\)\(2018^{201}\)=\(2018^{4.50+1}\)\(\Rightarrow\)\(2018^{201}\)có tận cùng là 8
Ta thấy \(9^{2k}=....1\)và \(9^{2k+1}=9\)
mà 200 là số chẵn nên \(A=2019^{200}=......1\)(tận cùng là 1)
Ta thấy \(8^{4k}=.....6\)(4k là số mũ chia hết cho 4)
nên \(B=2018^{201}=2018^{200}.2018=.....6.2018=.....8\)(tận cùng là 8)
a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)
\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)
Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)
b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)
\(\frac{2021}{2020}=1+\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)
c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)
\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)
Đến đây tự so sánh rồi nhé
ta có \(2^{2018}=2^{4k+2}=\left(2^4\right)^k+4=16^k+1=...6+1=...7\)
lại có \(17^{2019}=17^{4k+3}=\left(17^4\right)^k+17^3=...3^k+343=...3+343=....6\)
lại có \(13^{2020}=13^{4k}=\left(13^4\right)^k=...1^k=...1\)
=> A=....7x....6x......1=........2